【力扣】1143. 最长公共子序列

本文介绍了如何使用动态规划解决字符串text1和text2之间的最长公共子序列问题。通过实例演示和代码实现,展示了如何计算两字符串的最长公共子序列长度,以及在给定条件下返回0的逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。

示例 2:

输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。

示例 3:

输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:

1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。

答案:

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        //二维动态规划,dp[i][j]存储到当前text1的第i个字符,到text2的第j个字符的最长公共子序列的长度
        //当text1的第i-1个字符等于text2的第j-1个字符,则dp[i][j]=dp[i-1][j-1]+1
        //当text1的第i-1个字符不等于text2的第j-1个字符,则dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
        int row = text1.length(), col = text2.length();
        int[][] dp = new int[row + 1][col + 1];
        for(int i = 1; i <= row; i++){
            for(int j = 1; j <= col; j++){
                if(text1.charAt(i - 1) == text2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[row][col];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值