LeetCode题解(Offer41):数据流中的中位数(Python)

本文探讨了如何使用二分查找算法实现高效的MedianFinder,包括addNum操作的O(logN)时间复杂度和findMedian的常数时间复杂度。同时,讨论了空间复杂度和执行时间。通过实例展示了Python实现,以及两种可能的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:原题链接(困难)

标签:二分查找、设计

解法时间复杂度空间复杂度执行用时
Ans 1 (Python)addNum = O ( l o g N ) O(logN) O(logN) ; findMedian = O ( 1 ) O(1) O(1) O ( N ) O(N) O(N)282ms (50.00%)
Ans 2 (Python)
Ans 3 (Python)

解法一(二分查找):

class MedianFinder:

    def __init__(self):
        self.arr = []

    def addNum(self, num: int) -> None:
        bisect.insort_left(self.arr, num)

    def findMedian(self) -> float:
        a = len(self.arr) // 2
        b = (len(self.arr) - 1) // 2
        return (self.arr[a] + self.arr[b]) / 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值