【AIGC专栏】Stable Diffusion的涂鸦和局部绘制功能

我们可以在图片中添加相应的小物件,我们可以通过重绘的方式进行对象添加。

如果我们希望通过涂鸦的方式将对象的颜色修改,则可以在涂鸦的时候定制对象的颜色。

在Stable Diffusion 的图生图中的局部重绘功能就是针对选定的区域进行重新绘制。

在使用Stable Diffusion中我们需要有以下的参数需要进行设定。

蒙版边缘模糊度:
用于扩大蒙版边缘的模糊度,在绘图领域的高斯模糊就是当前选项,如果蒙版绘制的越清晰,模糊度就越小,蒙版绘制的越模糊就,数值就会越大。

蒙版模式:
基于当前蒙蔽的结果进行重新绘制,如果绘制的是蒙版区域则选择蒙版区域,如果绘制的相反,则选择非蒙版区域。

蒙版内容处理:
用于重绘时候的图像处理方式,这里如果选择原图则基本上不会变化,而采用潜空间噪声则会产生比较大的变化。

### Stable Diffusion Sampler 综合指南 #### 什么是采样器? 在Stable Diffusion中,去噪过程被称为采样。每一步都会产生新的图像样本,这一过程中使用的方法称为采样方法或采样器[^3]。 #### 常见的采样器及其特点 WebUI界面下提供了多种类型的采样器供选择,比如Euler a, Heun, DDIM等。这些采样器基于不同的算法实现,适用于不同类型的任务需求: - **Euler a (Ancestral)**: 这是一种简单而快速的选择,适合于大多数情况下的高效生成。 - **Heun**: 提高了精度并减少了伪影的可能性,尤其对于复杂场景更为有效。 - **DDIM (Denoising Diffusion Implicit Models)**: 能够提供更平滑的结果过渡效果,并允许用户更好地控制最终输出的质量细节层次[^2]。 #### 如何选择合适的采样器? 当面对具体应用场景时,可以根据以下几个方面来决定最适合自己的选项: - 如果追求速度优先,则可以选择像 Euler 或者 Ancestral Sampling 这样的方案; - 对于需要更高画质的情况,可以尝试采用 Heun 方法或者其他高级变体; - 当希望获得更加细腻平滑的变化趋势时,推荐考虑 DDIM 类型的策略[^1]。 ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('model_name') image = pipeline(prompt="a photograph of an astronaut riding a horse", num_inference_steps=50).images[0] ``` 此代码片段展示了如何加载预训练模型并通过指定参数`num_inference_steps`调整迭代次数来进行图片合成操作。通过改变所使用的采样器名称作为额外输入参数之一,即可轻松切换不同模式下的性能表现评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雾岛心情

欢迎你的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值