一步步教你配置LangSmith:让LangChain应用监控更高效

一步步教你配置LangSmith:让LangChain应用监控更高效

LangSmith 是 LangChain 精心打造的 AI 应用开发监测平台,它为开发者提供了一个高效的观察窗口,用于追踪和监控调用链的运行状态。在日常开发过程中,我们常常需要实时跟踪每个调用的细节,LangSmith 通过可视化方式,使得每一个运行的细节都清晰可见,帮助开发者及时发现问题和优化应用性能。

注册 LangSmith 账号并获取 API Key

在开始使用 LangSmith 之前,我们首先需要注册一个账号并获取 API Key。这个 API Key 是我们在代码中进行监控设置的关键。

注册账号

首先,打开 LangSmith 注册页面:https://smith.langchain.com/settings,点击注册并完成相关信息填写。

image-20250225141058822

注册成功后会跳转至首页

image-20250225141339379

个人每月有免费用的额度

image-20250225142504661

获取 API Key

访问 https://smith.langchain.com/settings 进入设置页面

在设置页面中,你可以看到一个用于生成 API Key 的选项。个人每月都有一定的免费额度,点击创建 API Key 后,系统会生成一个唯一的密钥。

image-20250225141457844

image-20250225141517599

复制 API Key 并妥善保存。它将用于代码中的配置,确保能够访问 LangSmith 平台并进行调用链监控。

image-20250225141610372

配置 LangSmith API Key 到代码

将 KEY 配置到代码中,运行代码,就可以看到我们调用的监控了,包括调用的 token、花费的钱等等

image-20250225143300966

配置代码

在你的代码中,需要设置几个环境变量来让 LangSmith 进行监控。确保将以下代码加入你的 Python 脚本中:

import os

# 设置 LangSmith 相关的环境变量
os.environ["LANGCHAIN_TRACING_V2"] = "true"  # 启用追踪
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"  # LangSmith API 的接口地址
os.environ["LANGCHAIN_PROJECT"] = "example"  # 项目的名称
os.environ["LANGCHAIN_API_KEY"] = '你的_API_KEY'  # 将你的 API Key 替换到这里

这里,LANGCHAIN_TRACING_V2 用于启用监控功能,LANGCHAIN_ENDPOINT 是 LangSmith 的 API 地址,LANGCHAIN_PROJECT 是你自己为项目指定的名称,LANGCHAIN_API_KEY 则是你在 LangSmith 注册时获得的 API Key。

示例:如何在代码中进行集成

假设你正在开发一个基于 LangChain 的聊天机器人应用,你希望能够实时监控每个用户请求的调用链,确保应用在高并发下的稳定性。以下是一个示例代码,展示如何将 LangSmith API Key 集成到 Python 中并开始监控。

代码示例

import os
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.llms import OpenAI

# 配置 LangSmith API Key
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_PROJECT"] = "chatbot_project"
os.environ["LANGCHAIN_API_KEY"] = '你的_API_KEY'

# 创建 OpenAI LLM 实例
llm = OpenAI(model="4o-mini", temperature=0.7)

# 创建一个简单的提示模板
template = "Translate the following English text to French: {text}"

# 使用 PromptTemplate 和 LLMChain
prompt = PromptTemplate(input_variables=["text"], template=template)
llm_chain = LLMChain(llm=llm, prompt=prompt)

# 运行并获取结果
result = llm_chain.run("Hello, how are you?")
print(result)

总结

LangSmith 提供了一个高效、直观的工具,帮助开发者监控和分析基于 LangChain 构建的 AI 应用。但需要注意的是如果你是调用自己本地的模型在LangSmith是无法记录到的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值