Python数据可视化 Pyecharts 制作 Map3D 三维地图

本文深入介绍了Python的Pyecharts库如何制作Map3D三维地图,涵盖基本设置、数据选项、地图类型、标签、材质效果等方面。通过实例展示动态数据的3D地图,如移动轨迹、数据标记点和3D柱状图,适用于全国行政区划和世界人口分布的可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在现代数据可视化领域,随着数据量和维度的不断增加,三维可视化逐渐成为展示复杂信息的有效工具。pyecharts库提供了丰富的三维图表选项,其中Map3D类通过三维地理图的形式,将地理信息与数据展示相结合,能够更加直观地展现数据的空间分布和动态变化。与二维地图相比,三维地图的优势在于可以通过增加深度维度,呈现更为细腻的地理特征和数据变化趋势,从而帮助用户理解复杂的地理数据。

本篇文章将详细介绍pyecharts库中Map3D类的使用,涵盖其主要配置选项及常见的应用场景,并通过具体的代码示例展示如何创建三维地理图、移动轨迹图、数据标记点图等图表。

Map3D : 三维地图

Map3D类是pyecharts库中用于生成三维地图的类。用户可以通过init_opts进行全局配置,包括图表的宽度、高度和背景颜色等。这些基础设置为生成三维地图提供了必要的框架。

class Map3D(
    # 初始化配置项,参考 `global_options.InitOpts`
    init_op
### 使用 Python 生成或操作城市三维地图 #### 创建三维地图的基础环境设置 对于城市级可视化项目中的三维地图创建,通常依赖于特定库来实现高效的地图构建与渲染。PyVista 是一个强大的用于三维地理空间数据可视化Python 库[^1]。 ```python import pyvista as pv from pyvista import examples # 下载样本地形数据集并显示其轮廓线 terrain = examples.download_crater_topo() cpos = terrain.plot(color='brown') ``` 此代码片段展示了如何通过 PyVista 加载外部地形文件,并快速预览所加载的数据。这一步骤有助于确认数据源的质量及其适用性。 #### 获取和处理基础地理信息 针对资源获取不便的问题,在 Python 中可以通过调用 Web API 或者使用开源 GIS 工具如 GeoPandas 来简化这一过程。这些方法允许开发者轻松访问全球范围内的开放地理信息系统(GIS) 数据。 ```python import geopandas as gpd # 读取 shapefile 文件为例展示地理边界 world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) ax = world.plot(figsize=(10, 6)) ``` 上述例子说明了怎样利用 Geopandas 处理矢量格式的地理数据,这对于准备制作三维地图所需的城市结构框架至关重要。 #### 构建三维模型 当涉及到具体建筑物或其他人工设施时,则需考虑更复杂的几何形状表示方式。Three.js 的 Python 版本——K3D-jupyter 提供了一个良好的解决方案,它支持直接在 Jupyter Notebook 内嵌入交互式的 WebGL 渲染器[^2]。 ```python import k3d import numpy as np plot = k3d.plot() vertices = np.array([ [-1, -1, 0], [+1, -1, 0], [+1, +1, 0], [-1, +1, 0], [0, 0, 1] ]) indices = np.array([0, 1, 4, 1, 2, 4, 2, 3, 4, 3, 0, 4], dtype=np.uint) line = k3d.lines(vertices, indices, shader='mesh', width=0.01) plot += line plot.display() ``` 这段脚本定义了一组顶点坐标及连接关系,进而形成一个多面体对象;最后将其添加至 K3D 绘画板上呈现出来。 #### 整合管线和其他地下基础设施 考虑到城市内部错综复杂的管网系统,可借助 Pandas 和 Shapely 进行二维转三维变换工作。这样不仅提高了工作效率还增强了最终成果的表现力。 ```python from shapely.geometry import LineString def convert_2dto3d(line_string, z_value): coords = [(p[0], p[1], z_value) for p in list(line_string.coords)] return LineString(coords) pipe_line = LineString([(0, 0), (1, 1)]) converted_pipe = convert_2dto3d(pipe_line, -5) # 假设管道位于地面下方五米处 ``` 这里实现了简单的二维线条向具有指定高度属性的三维实体转变的功能,适用于模拟埋藏较浅的各种市政工程线路走向情况。 #### 设置全局选项优化视觉体验 为了使生成的地图更加美观易懂,可以采用 `pyecharts` 设定一些全局样式参数,比如标题、颜色主题等[^3]。 ```python from pyecharts.charts import Map3D from pyecharts import options as opts map3d = ( Map3D(init_opts=opts.InitOpts(width="800px", height="600px")) .add_schema( itemstyle_opts=opts.ItemStyleOpts(shading="lambert"), maptype="china", box_height=90, is_roam=True, ) .set_global_opts(title_opts=opts.TitleOpts(title="中国主要城市的分布")) ) map3d.render_notebook() # 如果是在Jupyter环境中运行的话 ``` 以上配置使得整个场景看起来更为逼真自然的同时也方便用户浏览探索不同区域间的联系特征。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr数据杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值