【AI】向量数据库+上下文检索:提升RAG等AI应用的精准性与效率

随着生成式 AI(GenAI)的兴起,向量数据库(Vector Database)迅速走红。然而,向量数据库的应用远不止于大模型(LLM),它同样适用于各种 AI 系统,尤其是在 RAG 的场景下。
在 AI 领域,我们经常处理向量嵌入(Vector Embeddings)。向量数据库正是为了高效存储、更新和检索这些嵌入数据而生的:
✅ 存储(Storing)
✅ 更新(Updating)
✅ 检索(Retrieving)
其中,检索(Retrieval)指的是查找与查询向量最相似的一组向量,这一过程被称为近似最近邻(ANN, Approximate Nearest Neighbour)搜索。例如:查询可以是一个图片,希望找到与之相似的图片。查询也可以是一个文本问题,希望检索到相关背景信息,并借助 LLM 生成答案。

构建向量数据库:数据的写入与读取

写入/更新数据
1️⃣ 选择合适的机器学习模型,用于生成向量嵌入。
2️⃣ 对各种类型的数据进行嵌入(文本、图像、音频、表格等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值