《实战AI智能体》——魔搭多 Agent 模式

步骤二:配置全局设置

与单 Agent 模式类似,第一步是为智能体构建人物设定。

在智能体的编排面板,描述智能体的人物设定,并根据实际情况为智能体添加其他配置。

该区域中的配置是全局配置,将适用于所有添加的 Agent。其中,快捷指令默认不指定节点,即根据智能体用户的输入自动分配节点处理,你也可以为每个快捷指令指定对应的节点处理。

步骤三:添加节点

配置全局设置后,您可以在中间画布区域,为智能体添加节点。

默认情况下,开始节点已连接到了具有智能体名称的 Agent 节点。您可以单击添加节点向画布内添加更多的节点,并连接节点。

不同的节点对应配置和功能不同,具体说明如下所示。

开始节点

开始节点是智能体处理新对话时的默认起始节点,开始节点根据用户的问题及整体分发对话人物的逻辑,指定某个节点接管用户的问题。在与同一个用户进行多轮会话时,用户和智能体通常针对同一个主题展开多次问答,您可以为开始节点设置新一轮会话的分发策略,即由哪个节点接管用户会话。

配置说明如

### 关于智能体 (Agent) 开发框架的选择 在当前的人工智能领域,智能体Agents)开发已经成为一项重要课题。随着技术的发展,越来越的框架工具被设计出来以满足不同场景下的需求。以下是几个常见的智能体开发框架及其特点: #### 1. **LangGraph** LangGraph 是一种专注于提供清晰智能体结构支持的框架。它的优势在于能够简化人协作开发中的架构规范问题,使团队成员更容易理解并遵循一致的设计模式[^2]。然而,这种高度集成化的特性也可能带来一定的局限性——如果开发者对其默认行为不满意,则可能需要投入更时间进行调试。 #### 2. **LlamaIndex Workflows** 作为较新的框架之一,LlamaIndex Workflows 主打灵活性与可扩展性。相比 LangGraph 更加注重定制化能力,允许用户根据具体项目需求调整各个模块的功能实现方式。这对于希望深入控制整个系统运作机制的研究者或者高级工程师而言尤为适用[^1]。 #### 3. **自定义编码方案** 当然,在某些特殊情况下,“从零开始”构建自己的解决方案也不失为一个好的选项。尽管这种方法通常意味着更高的初始成本以及更大的维护负担,但它可以确保最终产物完全契合特定业务逻辑的要求。此外,通过亲手建每一个组件的过程还能加深对底层原理的理解程度。 --- ### 推荐的学习资源与教程 针对初学者或中级水平的技术爱好者来说,可以从以下几个方面入手来提升自己有关 Agent 的理论基础及实际操作技能: - **官方文档阅读**: 大数流行框架都会配备详尽的入门指南和API说明文件, 这些资料往往是获取最新特性和最佳实践的第一手来源. - **在线课程平台**: 如 Coursera、Udemy 上开设了不少专门讲解强化学习(RL), 自然语言处理(NLP)等相关主题的内容, 它们往往包含了大量实用案例分析. - **开源社区参与**: GitHub 等平台上存在海量由全球贡献者共同维护的高质量项目库, 加入其中不仅可以快速积累实战经验, 同时也能结识志同道合的朋友形成良好互动氛围. 下面给出一段简单的 Python 脚本用于演示如何利用 LlamaIndex 创建基本索引对象: ```python from llama_index import SimpleDirectoryReader, GPTListIndex # 加载数据源 documents = SimpleDirectoryReader('data').load_data() # 构建列表形式索引 index = GPTListIndex(documents) # 查询接口封装 def query_agent(query_str): response = index.query(query_str) return str(response) print(query_agent("What is the main idea of this document?")) ``` 此代码片段展示了怎样借助外部插件完成文本检索任务的同时保持较高的性能表现[^1]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值