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ABSTRACT

Database management systems (DBMSs) are notoriously difficult to
deploy and administer. Self-driving DBMSs seek to remove these im-
pediments by managing themselves automatically. Despite decades
of DBMS auto-tuning research, a truly autonomous, self-driving
DBMS is yet to come. But recent advancements in artificial intelli-
gence and machine learning (ML) have moved this goal closer.

Given this, we present a system implementation treatise towards
achieving a self-driving DBMS. We first provide an overview of the
NoisePage self-driving DBMS that uses ML to predict the DBMS’s
behavior and optimize itself without human support or guidance.
The system’s architecture has three main ML-based components:
(1) workload forecasting, (2) behavior modeling, and (3) action plan-
ning. We then describe the system design principles to facilitate
holistic autonomous operations. Such prescripts reduce the com-
plexity of the problem, thereby enabling a DBMS to converge to a
better and more stable configuration more quickly.
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1 INTRODUCTION

Much of the previous work on automated DBMSs has focused on
standalone tuning tools that target a single problem. For example,
some tools choose the best logical or physical design of a database,
such as indexes [15, 29, 30, 69], partitioning schemes [5, 52, 55, 58,
60, 79], data organization [7], or materialized views [4]. Other tools
select the tuning parameters for an application [6, 12, 26, 38, 70, 77].
Most of these tools operate in the same way: the DBA provides a
sample database and workload trace that guides the tool’s search
process to find a configuration that optimizes a single aspect of the
system (e.g., what index to build). The major vendors’ tools, includ-
ing Oracle [25, 36], Microsoft [14, 51], and IBM [66, 68], operate in
this manner. There is a recent trend for integrated components that
support adaptive architectures [8, 31], but these again only solve
one problem at a time. Cloud database vendors employ automated
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resource management tools at the service-level [23] or provide
managed versions of their previous recommendation tools [2, 22].

Although these previous efforts are influential, they are insuffi-
cient for a completely autonomous DBMS because they only solve
part the problem. That is, they are only able to identify potential
actions that may improve the DBMS’s performance (e.g., which
index to add). They are unable, however, to infer which ones to
apply and when to apply them because they do not predict work-
load trends or account for deployment costs [43]. Thus, they rely
on a knowledgeable human DBA to update the DBMS during a
time window when it will have the least impact on applications.
They are also unable to learn which actions under what conditions
provide the most benefit and then apply that knowledge to new
situations [44]. This need for a human expert contributes to the
high cost of ownership for DBMS software and the difficulty in
supporting complex applications.

What is needed is a self-driving DBMS that predicts an applica-
tion’s needs and then automatically chooses actions that modify all
system aspects holistically [56]. The DBMS learns how it responds
to each action it applies and reuses such knowledge in different
scenarios. With this knowledge, a self-driving DBMS can poten-
tially support most management tasks without requiring a human
to determine the proper way and time to deploy them.

The goal of a self-driving DBMS is to configure, manage, and
optimize itself automatically as the database and its workload evolve
over time. The core idea that guides the DBMS’s decision-making is
a human-selected objective function. An objective function could be
either performance metrics (e.g., throughput, latency, availability)
or deployment costs (e.g., hardware, cloud resources). This is akin
to a human telling a self-driving car their desired destination. The
DBMS must also operate within human-specified constraints, such
as cost budgets or service-level objectives (SLOs).

The way that a self-driving DBMS improves its objective func-
tion is by deploying actions that it deems will help the application
workload’s execution. These actions control three aspects of the
system: (1) physical design, (2) knob configuration, and (3) hardware
resources. The first are changes to the database’s physical represen-
tation and data structures (e.g., indexes). The second action type are
optimizations that affect the DBMS’s runtime behavior through its
configuration knobs. These knobs can target individual client ses-
sions or the entire system. Lastly, the resource actions change the
hardware resources of the DBMS (e.g., instance type, number of ma-
chines); these assume that the DBMS is deployed in an elastic/cloud
environment where additional resources are readily available.

In this paper, we provide an overview of our ongoing research
towards achieving a true self-driving DBMS. We begin with a discus-
sion of the different levels of automation that a DBMS can support.


https://doi.org/10.14778/3476311.3476411
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476411

We then describe the self-driving architecture of the NoisePage
DBMS [1]. The design of NoisePage’s planning components are
inspired from self-driving vehicles to facilitate autonomous opera-
tion [39]. This system serves as our research vehicle for exploring
new ML methods to solve complex action planning problems [64].

But even the most sophisticated ML methods are impotent un-
less system developers design the DBMS to support autonomous
operations. Thus, we also present software engineering design prin-
ciples that we believe are necessary in a self-driving DBMS. These
comes from our experiences developing ML-based tuning tools
for existing systems [6, 58, 70, 76] and new autonomous architec-
tures [1, 8, 43, 44, 56, 59]. Such principles are for developers who
are working on either existing DBMSs or building one from scratch.
Furthermore, they are independent of the ML methods or the sys-
tem implementation. The latter includes the storage organization
(disk vs. memory), system architecture (single-node vs. distributed),
or workload (OLTP vs. OLAP).

2 SELF-DRIVING DATABASES

There is currently no standard definition of what it means for a
DBMS to be “self-driving”. Furthermore, there is confusion about
how self-driving systems relate to self-adaptive [30], self-tuning [14],
and self-managing [36] DBMSs. Achieving full autonomy in a DBMS
is years away. There are, however, intermediate levels where a
DBMS removes control from humans and takes over more man-
agement responsibilities on its own. The amount of autonomy of a
self-driving DBMS plays a central role in its design and the user ex-
perience. Thus, we propose the following taxonomy on the levels of
autonomy that a DBMS can provide. We organize this in increasing
levels of autonomy with decreasing user interaction and control.
An overview of these levels is shown in Table 1.

Level #0: At the lowest level of autonomy, the system provides
an interface for the user to operate in a manual fashion. In other
words, the DBMS only does exactly what the human instructs it.

Level #1: The next level of autonomy provides assistant tools that
recommend improved configurations to the user for some DBMS
sub-systems. The user has to (1) select which recommendations to
apply, (2) decide when to apply them, and (3) monitor the DBMS’
behavior afterward. These tools often require the user to prepare
sample workloads and/or deploy a second database copy to eval-
uate new recommendations [13]. This level’s examples include
self-tuning tools that propose knob configuration [6, 26, 67, 70] or
index selection [15, 80] based on workload traces.

Level #2: This level of autonomy assumes a minimal control sys-
tem that collaborates with the user to configure some DBMS sub-
systems. The initiative for making decisions is mixed between the
DBMS and the user. Such autonomy exposes complex problems to
the user since the user may issue changes that conflict with the
DBMS’s control component. One example of this type of system was
a prototype for IBM DB2 from 2008 [74]. This system used existing
tools [37] in an external controller that triggered a change or notify
a DBA whenever a resource threshold was surpassed (e.g., buffer
pool hit ratio). It still required a human to select optimizations and
to occasionally restart the DBMS.
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Level Name Description

0 Manual No autonomy.

1 Assistant Recommendations to assist user.

2 Mixed Simultaneous user and system control.

3 Local Self-contained components.

4 Directed Semi-autonomous with direction from user.
5 Self-Driving Fully autonomous without direction.

Table 1: Levels of Autonomy - A classification of the levels of
capabilities of autonomy in DBMSs.

Level #3: The next level consists of local autonomy where each
sub-system can adapt without human guidance, but there is no
higher-level coordination between them or long-term planning.
The user decides to enable/disable these components’ autonomy.
For example, some DBMSs support automatic memory allocations
(e.g., Oracle [36], IBM DB2 [66]) or automatic creation/drop of
indexes (e.g., Microsoft’s auto-indexing in Azure [22, 42]). We also
believe that Oracle’s autonomous database-as-a-service offerings
are this level’s examples [2]. The service requires users to select
whether their application is a transactional or analytical workload.
It then uses Oracle’s existing assistance tools (Level #1) to handle
common tuning activities, but they are managed in isolation.

Level #4: At the directed level, the system manages all its sub-
systems and the user only provides high-level direction for global
configuration issues. Such direction includes hints about future
workload needs so that the DBMS can prepare for long-term de-
cisions (e.g., capacity planning). For example, the user may select
actions to begin scaling the DBMS’s deployment to prepare for an
upcoming surge in traffic. We also anticipate that the DBMS still
requires session-specific hints from humans at this level. The DBMS
is intelligent enough to recognize when to ask a human for help.

Level #5: Lastly, at the highest level of autonomy, the DBMS is
completely independent (i.e., self-driving) because it coordinates
across all sub-systems holistically without direction from the user.
It accounts for future workloads in its decision-making and sup-
ports all tuning activities that do not require an external value
judgment. For each planned or deployed action, the DBMS also pro-
vides human-understandable explanations about why it made the
decision to deploy that action. For example, the DBMS reports its
estimations on the action’s completion time, resource consumption,
and benefits to the system performance. Whether a self-driving
DBMS should still allow humans to configure aspects of the system
is up for debate. How the DBMS’s planning components would
respond to such human input is a difficult and unsolved problem.

3 NOISEPAGE ARCHITECTURE

We now describe NoisePage’s self-driving architecture that aims
to achieve the highest level of DBMS autonomy (Level #5). We use
the analogy of self-driving cars to explain our system’s design. At
a high-level, a self-driving car consists of (1) a perception system,
(2) mobility models, and (3) a decision-making system [54]. The
perception system observes the road condition and predicts the fu-
ture state, such as other vehicles’ moving trajectories. The mobility
models estimate the vehicle’s behavior under a control action in
relevant operating conditions. Lastly, the decision-making system
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Figure 1: NoisePage Architecture — NoisePage’s self-driving architecture consists of an on-line workload forecasting component, an
off-line behavior modeling component, and an on-line action planning component.

selects actions to achieve the driving objectives using its perception
data and model estimates.

As illustrated in Figure 1, NoisePage’s self-driving architecture
consists of three similar components: (1) workload forecasting, (2)
behavior models, and (3) action planning [57]. NoisePage’s on-line
workload forecasting component predicts the application’s future
queries over multiple time horizons based on their past arrival
rates [43]. NoisePage then uses these forecasts with its behavior
models generated off-line to predict the cost and benefit of deploy-
ing actions without expensive exploratory testing [44]. With this
cost/benefit estimates, the DBMS’s on-line action planning compo-
nent selects action(s) that it believes will improve the system’s target
objective function (e.g., latency, throughput). NoisePage then auto-
matically applies these actions, monitors its behavior, and repeats
the process. All of this occurs without any human intervention.

We now discuss these three components in more detail:

Workload Forecasting: Forecasting allows the DBMS to prepare
itself for future workloads, much like a self-driving car predicts the
road condition up ahead using LIDAR and cameras. If the DBMS
only considers the past workload, it will be unable to prepare it-
self in time for upcoming changes in the application’s workload
that require actions with long deployment time. Applying actions
without knowing the future workload can also increase resource
contention if DBMS applies them during inopportune times.
NoisePage uses workload traces and database statistics to gener-
ate forecast models [43]. When NoisePage receives the workload
from the clients, it stores the workload’s query arrival rates and
parameter samples in aggregated intervals (e.g., per minute) in
internal tables. It periodically sends this data to its training compo-
nents process to build the forecast models. These models predict the
future arrival rates for each query in the aggregated intervals over
different horizons (e.g., one hour, one day, one week). NoisePage
also uses query templatization, arrival-rate-pattern clustering, and
an ensemble of time-series forecasting methods to efficiently train
these models and accurately predict various workload patterns.

Behavior Modeling: Similar to a self-driving vehicle that uses
models to estimate the effect of turning the steering wheel, a self-
driving DBMS also uses behavior models to estimate and explain
how a potential action changes the system’s performance. This

is challenging because DBMSs are complex software that may re-
quire a high-dimensional model, which may require a large amount
of training data and make debugging more difficult. Concurrent
operations in multi-core environments further complicate DBMS
behavior modeling.

To address these issues, NoisePage decomposes the DBMS’s into
small and independent operating units (OUs) that it then models
separately [44]. Each OU model represents some internal task in
the system (e.g., scanning a table, building an index). The OU de-
composition means that each model is low-dimensional and only
requires a moderate amount of training data. NoisePage also uses
an additional interference model that captures the resource compe-
tition among concurrent OUs. It uses a set of specialized off-line
runners that sufficiently exercise each OU to generate training data
for the OU models. It selects the best ML algorithm for each model
over a wide range of popular ML algorithms using cross-validation.

Action Planning: A self-driving DBMS needs to decide when to
apply which actions to optimize the objective given the workload
forecast and model estimation. To make a DBMS completely au-
tonomous, this planning step must (1) account for both the current
and future workloads to address problems before they occur, (2) sat-
isfy all system constraints (e.g., maximum memory consumption),
and (3) provide explanations for the past and future planned actions,
which are important for examination, debugging, and auditing.
NoisePage uses a standard scheme in control theory, called receding
horizon control (RHC) [48], to ensure these requirements. Although
RHC allows a system to perform multi-stage planning, solving
RHC’s continuous, discrete, and constrained optimization problem
is computationally expensive. Thus, NoisePage employs a Monte
Carlo tree search (MCTS) planning method to improve RHC’s ef-
ficiency. MCTS explores a number of randomized sequences of
actions up to the planning horizon and selects the best sequence. It
can potentially balance the trade-off between the planning cost and
quality. Previous research on Al systems have successfully used
MCTS, such as AlphaGo [64].

In the next sections, we discuss the design principles for building
such a self-driving DBMS. As this is an active research area, there
are many unanswered problems. We will not cover the ML methods
to solve them. Instead, our focus is on how to build a DBMS that is
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ENVIRONMENT OBSERVATIONS

AcCTION META-DATA

AcTiON ENGINEERING

‘Workload History (§4.1)

e Maintain a history of the queries and transactions
with their execution context, runtime behavior,
plan hints, and result.

Runtime Metrics (§4.2)

o Include meta-data tags about metrics’ correspond-
ing DBMS sub-system and hardware resource.
Support variable metric collections rates for dif-
ferent parts of the DBMS.

Expose metrics for tunable sub-components.
Always use the same unit of measurement for
related metrics.

Hardware Capabilities (§4.3)

o Periodically measure hardware performance and
align with collected metrics time-series data.

e Collect training data on different hardware con-
figurations in elastic environments.

Configuration Knobs (§5.1)

e Mark which knobs are untunable.

Expose a knob’s accepted value range or options.
Mark whether a knob can be tuned per session.
Provide hints on how to increment/decrement
each knob based on its current value.

Include meta-data tags about their DBMS sub-
system and hardware resource.

Dependencies (§5.2)

® Do not use special knob values to indicate whether
a feature is enabled/disabled.

Do not allow effects of an action to be implicitly
controlled by another action.

Support explicit reversal actions that undo the
effects of another action.

Deployment History (§5.3)
o Maintain a log of every action deployment to track
outcomes over time.

No Downtime (§6.1)
e Do not block queries or require the DBMS to
restart before an action takes affect.

No Self-Managed Components (§6.2)
® Do not include separate sub-systems that are au-
tomatically managed separately from the DBMS.

Observable Deployment Costs (§6.3)

e Only deploy one action at a time.

e Provide a notification API to push alerts when an
action deployment starts and stops.

Aborted Actions (§6.4)

e Reject actions that will put DBMS in an invalid
state before starting their deployment.

e Do not allow actions to cause unexpected behav-
iors that are observable by clients.

Adjustable Deployment Resources (§6.5)

e Support variable resource limits for actions.

Table 2: Design Principles Summary — An overview of the design principles categories to support self-driving operation in a DBMS.

amenable to autonomous planning and operation. Table 2 provides
a summary of these principles that we present in Sections 4 to 6.

There are two overarching themes in our discussion. Foremost is
on how to expose useful information about the DBMS. This includes
both the application’s workload and metrics about the DBMS’s
internals, as well as how to control its behavior. The next issue
is related to how the DBMS deploys actions. Ideally each action
completes quickly and with little impact on performance, but this is
not always possible. Both of these issues are important for enabling
a DBMS to manage itself without wild swings in performance.
Achieving this is difficult because DBMS deployments are fluid and
the solution space for tuning them is vast. Hence, these design
principles are often ways to reduce the number of choices that the
DBMS has to consider, as well as to make it easier for it to explore
configurations and learn about its environment.

4 ENVIRONMENT OBSERVATIONS

Most DBMSs are good at collecting information about their envi-
ronment, such as the workload (Section 4.1) and internal runtime
metrics (Section 4.2). The problem is that there is an overabundance
of data that makes it difficult to separate signals from the noise [70].
Furthermore, many DBMSs also do not expose information about
their hardware to enable reusing training data across operating
environments (Section 4.3). A self-driving DBMS must maintain a
history of this information instead of only keeping the latest snap-
shot; retaining older data provides context about the previous state
of the system that it uses for learning. We discuss how to remedy
these issues in this section.

4.1 Workload History

A self-driving DBMS selects actions based on what its forecast
models predict the system will need in the future. The challenge
with such forecasting is that the environment is dynamic (i.e., the
workload, database physical design, and knob configuration change
over time). Even if these factors are static, the size of the database
could also grow or shrink. This variability means that forecasting
low-level metrics during query execution, such as CPU utilization
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or tuples read/written, will lead to unstable models as these will
change as the DBMS evolves its configuration.

A better approach is to predict the arrival rate of queries and then
extrapolate their expected resource utilization [43]. To do this, a
self-driving DBMS records the workload history of the transactions
and queries that it executes. Each entry in the history contains the
logical operation invoked (e.g., SQL) along with its execution con-
text. This context includes client meta-data, query plan hints, and
session-specific configuration knobs (Section 5.1). The system also
tracks each query’s completion status, such as its execution time
and whether its parent transaction aborts. Recording this additional
information ensures that the DBMS can properly approximate how
the queries execute in its predictions.

The naive approach to collect this history is for the DBMS to
track every query that it executes. Such a strategy, however, will
consume a sizable amount of storage space for large applications
and incur significant runtime overhead. Furthermore, many of the
entries of the history will be redundant (e.g., the same query with
different constants), which may lead to overfitting the ML models.
The two approaches for reducing this overhead are (1) sampling
and (2) aggregation. With the former, the DBMS should sample
at the transaction-level to ensure every query in a transaction is
included in the history.

The other approach for reducing the history is to aggregate the
traces. One common technique is to extract the logical structure of
the SQL query by removing the literals and then combine queries
with the same logical structure. There are also more advanced tech-
niques beyond logical structure extraction. For example, Microsoft
proposed compressing a workload by searching for redundant SQL
statements with an application-specific distance function [13]. An
alternative approach that is explicitly designed for self-driving
DBMSs is to compress the workload using the similarities between
the temporal patterns of queries [43].

4.2 Runtime Metrics

A DBMS’s metrics are performance counters that record the activi-
ties of its internal runtime components. Engineers add these metrics



to enable DBAs and monitoring tools to observe the system’s behav-
ior and diagnose problems. The DBMSs also uses them internally
to trigger maintenance operations, such as garbage collection in
MVCC systems and compaction in LSM systems. A self-driving
DBMS trains models from metrics that estimate the cost/benefit of
actions under varying conditions. Metrics also guide the system to
propose/prune candidate actions.

There are two categories of metrics. The first are accumulating
metrics that count the number of events that have occurred since
some point of time. For example, the DBMS can record the number
of pages read from disk since it started. The other category are
aggregation metrics that record the average number of events over
a time window. As we now describe, exposing metrics needs careful
consideration so that ML algorithms have the proper data:

Meta-Data Tags: Each metric should record what sub-system it
is collects data from in a structured meta-data tag. They should
match action tags that modify those sub-systems. Similarly, if a
metric measures some aspect of a hardware resource (e.g., CPU
utilization, disk I/O), then it should also include a tag that records
this information. These tags serve two purposes. First, they remove
the need for the DBMS to train separate models to identify which
metrics are affected by which actions. The DBMS still has to learn
how actions affect these metrics and how they impact the objective
function, as these will be different per workload and can change
over time. The second benefit of tagging is that the system can
use them to produce human-understandable explanations for its
decisions. Such information is important for instilling confidence
in DBAs that a self-driving DBMS is operating correctly.

Variable Fidelity: Related to meta-data tags is the ability for the
DBMS to dynamically adjust the frequency at which it collects met-
ric data. The DBMS may want to temporarily enable fine-grained
metric data for one part of the DBMS without having to enable it
for the entire system. Such increased fidelity does not mean that
the DBMS enables data collection for counters that normally are
dormant. Rather the DBMS collects more samples of its fixed set
of metrics. Increasing the number of samples produces more data
for parts of the system where it has low-confidence in its models
or where it is exhibiting unexpected behavior as it deploys actions.

Sub-Components: Some DBMSs support separate configurations
for individual sub-components. This can be either changes to data-
base objects (e.g., tables, indexes) or knobs that dynamically create
new dependent knobs. For the former, some DBMSs support cus-
tomized storage policies for each table. As an example of dynamic
knobs, one can create multiple buffer pools in IBM DB2, each of
which the DBA can tune separately. It is imperative to expose met-
rics about each individual component. Otherwise it is more difficult
for the DBMS to infer how an action has affected that component.
It is possible for algorithms to infer the effect a sub-component
has on the DBMS’s objective function, but it has to hold all other
variables constant (e.g, workload, hardware resources).

4.3 Hardware Capabilities

Including hardware profiles with a DBMS’s metrics enables the
ML components to reuse training data across deployments [77].
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Without this, the system has to collect a new training corpus for
each new deployment or upgrade even if it is the same application.
If the DBMS only has the old training data without the hardware
context, then its models are unable to distinguish whether unex-
pected changes in performance (even if they are positive) are due
to its actions or because the hardware is different. This is important
in cloud environments where the performance differences between
instance types are not uniform for all resources. For example, Ama-
zon provides large memory instances that use older CPUs with
fewer cores compared to other instances with less memory but
newer CPUs with more cores. If queries are slower after migrating
the database to this larger memory instance, then the DBMS must
determine whether this is because of a recently applied action or
because the CPU is slower.

A hardware profile is a combination of its specifications and mea-
sured performance. For example, the CPU’s specification would
include the number of cores. The performance measurements are
synthetic benchmarks that target each hardware resource (e.g., fio
for disk, bogomips for CPU). Some DBMSs already use microbench-
marks for enhancing the query optimizer’s internal cost model [40].
The system will want to run these periodically since performance
varies over time, especially in cloud environments. It will also cate-
gorize the measurements for each hardware component using the
same tags as the metrics described above.

One additional challenge is how to support resource scaling in
elastic environments where the capabilities of new machines are
unknown. For example, if the DBMS wants to migrate the database
to a faster machine, then it needs to estimate how much it will
affect the objective function before it decides whether to move. To
do this, the system’s planning components need training data about
the available hardware. This is again where the metrics’ meta-data
tags are useful: since hardware changes are multi-dimensional (e.g.,
memory, CPU, disk), the tags enable the system to identify what
resource(s) are under/over-utilized so that it can select the proper
resource to shrink/expand. This is a good example of how cloud-
based DBaaS vendors will have an advantage over organizations
that run a self-driving DBMS themselves, since vendors have access
to more deployments on a myriad of configurations.

5 ACTION META-DATA

In this section, we discuss the importance of exposing meta-data
about actions. One could implement this information by hard-
coding the meta-data into the tuning algorithms. We contend, how-
ever, that it is better software engineering to maintain this infor-
mation as first-class concepts along with the actions inside of the
DBMS. This ensures that the meta-data (more) accurately reflects
the DBMS’s internals, since the same developers implementing the
actions will also provide the meta-data.

5.1 Configuration Knobs

A DBMS’s configuration knobs control aspects of its runtime oper-
ations. The three categories of knobs are (1) resources, (2) policies,
and (3) locations. Knobs in the first category specify how much
of a resource the system use for a task. These can be either for
fixed components (e.g., the number of garbage collection threads)
or for dynamic activities (e.g., the amount of memory to use per



query). Policy configuration knobs control how the DBMS behaves
for certain tasks. For example, a knob can control whether or not
the DBMS flushes the write-ahead log to disk when a transaction
commits. Lastly, the location knobs specify where the DBMS finds
resources that it needs (e.g., file paths) and how it interacts with
the outside world (e.g., network port number).

We now describe the knob meta-data that a DBMS must expose
for its ML algorithms.

Untunable Knobs: Any knob that requires human knowledge
to make a value judgment about the right decision should not be
exposed to the autonomous components. They should be clearly
marked as untunable so that the system does not modify them.
There are obvious cases, like location knobs that define file paths,
where the system will not function if they are set incorrectly.
Setting other policy knobs incorrectly may not cause the system
to become inoperable, but more subtly affect the database’s correct-
ness or safety. The most common example of this that we found is
whether to require the DBMS to flush a transaction’s log records to
durable disk before it is committed. If the ML algorithms discover
that changing this knob improves the objective function, then they
will likely make that change. But this means that the DBMS could
potentially lose data for recently committed transactions if there is
a crash. Such a trade-off may be appropriate for some applications
where losing the last few milliseconds of transactions is not a prob-
lem (e.g., recording website clicks), but for other applications such
a loss is impermissible (e.g., financial transactions). The DBMS is
unable to know what the right choice is for an application because
it requires a human to decide what is allowed in their organization.

Value Ranges: Constrained value ranges for knobs (min/max for
numerical values or enums for categorical values) are crucial to a
safe automated tool. Without this information, the algorithm can
crash the system outright through incorrect values. Even worse,
the system could continue to operate under the assumption that the
previous action was successful and is responsible for the current
database state, leading to byzantine failures. Having the DBMS
expose this information obviates the need for developers to hard-
code this information into the ML algorithms.

Scope: When the DBMS changes a knob, every client should see
that change immediately or soon after (e.g., the next query). We
are not aware of any knob change that should not be immediately
observable by all sessions, even if that client is in the middle of
executing a transaction. To the best of our knowledge, this has no
adverse effects on the training data that the system collects.

Some DBMSs also allow clients to override global values for
knobs and configure them for their session. For these knobs, the
DBMS should denote in its catalog whether a knob supports per-
session changes. Supporting automatic tuning for per-session knobs
increases the complexity of the problem because it requires the
DBMS to construct additional models that (1) predict the execution
patterns of clients and (2) classify new connections based on their
behavior. Hence, we believe that the first self-driving DBMSs are
unlikely to provide per-session tuning.

Tuning Deltas: System developers design most knobs to allow a
DBA to set them to arbitrary values. For example, one can set the

value for the knob that controls a DBMS’s buffer pool size to any
number of bytes between some lower bound and the total amount
of memory on the machine. This flexibility comes at a cost in that
it increases the solution space for each knob. When there is such
a large number of choices for a single knob, then there will be a
large range of values where their effect on the objective function is
unknown. This means that the ML components need more training
data before they are able to converge to good configurations. In the
case of the knob that controls the buffer pool’s memory size, the
DBMS may already have data about the system’s behavior when
the size is 1.0 GB, but not when it is set to 1.01 GB. There is unlikely
to be a difference in performance between these two settings.

To help reduce the complexity of this solution space, a self-
driving DBMS should provide hints on how to increment a knob for
given ranges. That is, instead of the DBMS deploying an action that
sets an exact value for a knob, the action increments or decrements
the knob by a fixed amount. An additional advantage of using deltas
is they potentially provide smoother transition between configura-
tions and avoid large performance oscillations.

To further reduce the number of the DBMS’s potential configu-
ration states, these delta actions should also vary the magnitude of
the change based on a knob’s current value. For example, for buffer
pool sizes less than 1 GB the delta amount is 10 MB, whereas the
delta amount is 1 GB for sizes less than 1 TB. The insight here is
that the difference between smaller deltas are greater on machines
with small amounts of RAM, whereas the impact is trivial for large
memory machines.

Meta-Data Tags: Each knob should include meta-data about what
part of the system it affects. The planning components can pair
these tags with the metric tags (Section 4.2) to provide hints about
which actions to prioritize given the system’s current state.

5.2 Dependencies

The DBMS should also track how actions interact with each other.
Such dependencies exist when one action enables/disables a feature
in the system while another action controls that feature’s behavior.
Unless the DBMS deploys the first action, the second action will
have no effect. This dependency information enables the DBMS to
avoid selecting an action that modifies the dependent component
unless their parent is set. Again, this reduces the number of actions
that the DBMS has to consider. As we describe below, there are
some dependencies that make it difficult to model how the system
reacts to changes.

No Special Knob Values: Tracking dependencies removes the
need for ad-hoc handling of knobs that use a special value (e.g., 0,
-1) to do something different than what the knob normally does,
such as disabling a feature. The DBMS instead should provide a
separate boolean knob to control it. This knob is marked as untun-
able and then the system only examines the dependent knobs if the
first knob is enabled.

There are other knobs with special values that do not affect
correctness, but rather make modeling the DBMS’s behavior more
difficult. For example, a special value of “0” may allow for the
DBMS to assign its own value for the knob, either to some default
or expected optimal value. The planning components may never
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explore such a setting for this knob (even though it may be optimal)
because its models will predict that performance degrades as the
knob’s value converges to zero. Or they will think that a lower
value is better even though the opposite is true, which drives the
optimization search in the wrong direction. We again contend that
a self-driving DBMS should never use such knobs.

No Hidden Dependencies: Similar to special values, actions should
not have hidden dependencies. That is, the behavior of one part of
the DBMS should not depend on the configuration of another sub-
system. Postgres provides an illustrative example of this problem.
The DBMS provides a knob that controls the maximum amount of
memory that the system’s garbage collector is allowed to use!. If the
action sets this knob to a special value (i.e., - 1), then the actual knob
value at runtime is the value of another knob?. One only discovers
their implicit dependency from reading the documentation.

In addition to removing the special value for the knob in this
example, it is better that the two knobs are decoupled. Again, such
dependencies greatly increase the complexity of modeling the sys-
tem’s behavior under different conditions because the planning
components must consider two operations modes (i.e., one where
they are linked, and one where they are separate). If there are
truly scenarios where the two knobs should be equivalent, then the
system will discover that on its own with enough training data.

Dynamic Actions: More complex dependencies are (1) actions
that enable other actions or (2) actions that the DBMS only exposes
when it creates an object (e.g., table-specific knobs). The DBMS
must provide meta-data that indicates what knobs are created or
enabled by an action’s deployment.

The easiest dynamic actions to support in a self-driving DBMS
are “reversal” actions that undo the modifications of a previously
deployed action. All actions except for knobs and resource actions
need to have reversal actions. For example, the reversal of a physical
design action that creates an index is to drop that index. Knob
configuration and resource scaling actions do not need them if their
changes are defined as deltas rather than discrete values.

To understand the issues with non-reversal dynamic actions,
consider the example of an action that adds an index to a table.
After the DBMS deploys this action, then it exposes (1) actions
to modify that index’s knobs and (2) actions that install hints in
query plans to force them to use that index. One could refactor
the latter actions into a generic form to remove this dependency.
That is, rather than the action installing hints for a specific index,
it instead chooses the most recent index created. This is likely the
better approach, since which query plans to target will evolve over
time. But dealing with the first group of actions that tune a new
system component or database object is more challenging.

5.3 Deployment History

The DBMS needs to maintain the history of each action deploy-
ment. This record is more than the timestamps of when the DBMS
starts/finishes an action. It also includes internal metrics from the
DBMS'’s sub-systems, as well as a representation of the DBMS’s
state at the moment of the deployment. This state is the DBMS’s

1PostgreSQL Knob - AUTOVACUUM_WORK_MEM
zPostgreSQL Knob - MAINTENANCE_WORK_MEM
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knobs, physical design, hardware, query plan hints, in addition to an
succinct encoding of the current workload and database contents.

The deployment history provides several benefits. Foremost is
that it provides a log to help the planning algorithms reason about
how the system may have reached its current state. This is impor-
tant for initiating actions in response to performance degradation
or SLO violations. Lastly, the planning components can extrapolate
a human-readable explanation of why the action was chosen from
this encoding. This improves transparency by allowing DBAs to
examine the system’s reasoning and behavior.

6 ACTION ENGINEERING

A self-driving DBMS uses the environment data and action meta-
data discussed in the previous sections to select actions. There are
two requirements that the DBMS must ensure when deploying ac-
tions. Foremost is to minimize the cost of deploying an action on the
objective function. This means no downtime, but also no wild oscil-
lations in performance. Lastly, actions should not cause applications
to observe any effects of an action’s deployment other than changes
in the DBMS’s objective function. Such effects include incorrect
query results, lost/corrupted data, and client disconnections.

We now discuss how the DBMS can support efficient and infor-
mative action deployments.

6.1 No Downtime

The most important thing for a self-driving DBMS is the ability to
apply changes without periods of unavailability. This downtime
could be either blocking query execution until an action completes
(e.g., halting queries from accessing a table while the DBMS builds
a index) or having to restart the DBMS before a change can takes
affect. Taking the system offline to apply changes makes planning
more difficult because a human has to instruct the DBMS when it
is allowed to restart itself.

We are not aware of any system modification that a self-driving
DBMS should be allowed to automatically tune that requires such
downtime. We believe that this limitation is entirely due to engineer-
ing factors and not some fundamental scientific reason. Certainly
there are heavy-weight modifications that degrade performance
during deployment (e.g., compaction), but the system can factor
this in its estimates.

If the DBMS is unable to deploy actions without downtime, then
it must include the expected downtime in their cost estimates. It
will also need to distinguish between blocking downtime versus
restarting. Restarting the DBMS is particularly pernicious because
some actions may require additional work on restart, which makes it
unavailable for longer periods. These restart times can also depend
on the current DBMS’s configuration. For example, suppose one
is changing MySQL log file size® to 5 GB. If the previous setting
for this knob was 10 GB, then the DBMS will compact the log file
upon restart. But if the previous setting was 1 GB, then the DBMS
does not need to do anything. If restarting is unavoidable, then the
DBMS could provide hints about its expected recovery time based
on what work it needs to perform and its hardware capabilities.

3MySQL Knob - INNODB_LOG_FILE_SIZE



Another problem with downtime is that the DBMS may also have
to ask a human for permission to restart the system to avoid down-
time during peak hours. This complicates planning because the
algorithms must include the date and time in its estimates to decide
whether it is allowed to choose actions that require restarting.

6.2 No Self-Managing Components

Some commercial DBMS vendors introduced “self-managing” sub-
systems in recent years that operate without the need for humans
to tune them. For example, Oracle provides a memory allocator [19]
that uses heuristics to automatically determine the memory allo-
cations for its components (e.g., buffer pools, query caches). Some
cloud-based DBaaS vendors, like Microsoft SQL Azure, provide
tools that automatically installs table indexes [22]. Each of these
sub-systems maintain their own models and then independently
decide when to deploy an action.

The issue with separate self-managing sub-systems is that they
introduce externalities that are difficult to capture in the ML models
if the system is trying to do holistic planning. Consider the scenario
of Oracle’s self-managing memory feature. Suppose the allocator
initially assigns a small amount of memory for query result caching
and a large amount to the buffer pool. The DBMS then chooses
to build an index because memory pressure in the buffer pool is
low. But then the allocator decides on its own to increase the result
cache size and decrease the buffer pool size. With this change, there
is now less memory available to store the index and data pages,
thereby increasing the amount of disk I/O during query execution.
Thus, the index that the DBMS just added is now a bad choice
because of another change in the system that it does not control.
To avoid this problem, the DBMS has to include the possibility of
allocator configuration changes in its models, which increases their
dimensionality and complexity.

6.3 Observable Deployment Costs

In addition to estimating how an action can improve the objective
function if it is deployed, the DBMS’s behavior models also estimate
the cost of deploying each action [44]. This cost includes (1) the
amount of resources that the DBMS uses during deployment (e.g.,
CPU, memory), (2) changes to the objective function, and (3) the
estimated elapsed time for the deployment. The system assigns each
action invocation a unique identifier that allows it to track what
caused its configuration to change. Every sub-system participating
in deploying an action records the amount of physical resources
that it uses during the operation. The DBMS then aggregates this
information together after the action completes and stores it in its
history. The accumulated resource usage is a combination of DBMS
(e.g., latches held) or OS (e.g., CPU wait time) measurements. Since
the DBMS does not execute actions as frequently as queries, the
overhead from collecting this data for every action is negligible.

The DBMS should only deploy one action at a time so that the
training data accurately reflects their execution costs. It is unknown,
however, how to automatically determine the best time that the
DBMS should wait before deploying the next action. With longer
waits, the more confident it can be about the current configuration.
The shorter the wait, the harder it is to identify what action is
causing a problem.
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The DBMS must also provide a notification API for the planning
components to identify when an action deployment starts and
finishes. Without this, it is more difficult to determine whether a
performance degradation is due to the cost of deploying the action
(e.g., resizing a log file on disk) or because it was a bad choice.

6.4 Aborted Actions

Two overarching principles for handling aborted actions is that
the DBMS (1) cannot allow partial actions and (2) cannot retain
observation data from its deployment. An example of the former
is an action that reduces the amount of memory allocated for a
sub-system by 100 MB, but for whatever reason the system can
only reduce it by 50 MB. The DBMS cannot allow this because
then the internal models will not accurately reflect the state of the
system [20]. The partial action might also be equivalent to another
action, but then the system would incorrectly attribute the training
data collected to the original action. Similarly, the DBMS must
discard data collected during rejected and failed actions. This is
because it is difficult to track how far along the DBMS’s sub-systems
may gotten in the deployment before the failure.

We next discuss how the DBMS should handle scenarios that
cause it to abort an action during its deployment.

Rejections: The DBMS may attempt to deploy an action that it
is unable to complete. For example, suppose that the DBMS’s con-
figuration assign one thread to its background maintenance pool
(e.g., garbage collection). The system then choose an action that
decrements the number of threads in this pool. This action is invalid
because the pool must have at least one thread. The DBMS should
therefore reject the action and record that it was not able to comply
with the request. Ideally, the DBMS should also provide additional
information, such as whether the action was rejected because of
a short-term issue (e.g., no idle threads) or whether it is a more
permanent problem (e.g., not enough memory).

Failures: An action failing to complete is different than a rejected
action because the action would otherwise have completed success-
fully. But just the same, the training data that the DBMS collects
during its deployment is “tainted” and thus it must be discarded.
Such failures could occur due to logistical issues (e.g., a human
drops an index right before the DBMS attempts to drop it) or hard-
ware failures. The latter is more difficult to handle when there are
transient failures (e.g., the network goes down for a brief period of
time during an action).

6.5 Adjustable Deployment Resources

Lastly, the DBMS must support executing the same action with
varying resource usage levels. Such resources are based on the
system’s hardware components: (1) number of CPU threads, (2)
amount of memory, (3) disk bandwidth, and (4) network bandwidth.
This allows the DBMS to choose more aggressive deployment strate-
gies based on deadlines or the current load. For example, the DBMS
could build an index with only one thread during the day when
demand is high to avoid interfering too much with the application’s
queries. But at night when the DBMS has more idle cycles, it can use
eight threads to construct the index more quickly. This index could
target the current workload or part of the system’s preparation



for the next day’s workload. In the case of the latter scenario, the
DBMS could also run simulations to determine whether adding that
index was the correct decision.

Selecting how much of a resource to let an action use is diffi-
cult, as the DBMS must be careful to not violate SLO constraints.
Another complexifier is that these these resource allocations are
sometimes the upper bound of how much the DBMS is allowed
to use and not what it actually uses. For example, even though an
action could run on four threads does not mean that the DBMS uses
four during deployment. This makes it difficult to accurately predict
total resource usage. Hence, we anticipate that the first self-driving
DBMSs will use fixed allocations to simplify this problem.

7 RELATED WORK

To the best of our knowledge, there has never been a fully au-
tonomous DBMS. In the early 2000s, there were several ground-
breaking solutions that moved towards this goal [14], most notably
Microsoft’s SQL Server AutoAdmin [16] and IBM’s DB2 Database
Advisor [60, 65, 80]. Others proposed RISC-style DBMS architec-
tures made up of inter-operable components that make it easier
to reason about and therefore control the overall system [73]. Ter-
adata’s Active System Management provides tools for DBA’s to
write rules for automatic admission control. But over a decade later,
all of this research has been relegated to standalone tools that assist
DBAs and not supplant them.

The closest attempt to a fully automated DBMS was IBM’s proof-
of-concept for DB2 from 2008 [74]. This system used existing
tools [37] in an external controller and monitor that triggered a
change whenever a resource threshold was surpassed (e.g., the num-
ber of deadlocks). This prototype still required a human DBA to
select tuning optimizations and to occasionally restart the DBMS.
And unlike self-driving DBMSs, it could only react to problems
after they occur because the system lacked forecasting.

Automation is more common in cloud computing platforms be-
cause of their scale and complexity [21, 33]. Microsoft appears to
be again leading research in this area. Their Azure service models
resource utilization of DBMS containers from internal telemetry
data and automatically adjusts allocations to meet QoS and bud-
get constraints [23]. There are also controllers for applications to
perform black box provisioning in the cloud [3, 11, 61, 62]. Oracle
announced their own “self-driving” DBaaS$ in 2017 [2]; although
there is little public information about its implementation, our un-
derstanding from their developers is that they are running their
previous tuning tools in a managed environment.

More recently, there have been attempts to use deep learning [72]
combined with reinforcement learning (RL) to assist with specific
parts of the DBMS’s runtime architecture. For example, researchers
have proposed RL models for query optimization [45, 46, 53], index
tuning [9, 63], cardinality estimation [32, 41], partitioning [27], and
general tuning choices [71]. Other forms of deep learning have also
been applied to cardinality estimation [35] and query performance
prediction [47]. Alternative models include graph embeddings [78]
and analytical models [50]. These approaches are each limited to a
single decision problem in a static operating environment and do
not consider long-term forecasts in their models.
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A line of research in the software engineering community aims
to develop general purpose frameworks that enable self-adaptation
capabilities in arbitrary software [17, 24, 34]. Such frameworks act
as external controllers of a target system by executing actions using
information that it collects with probes. One of the most influential
projects is the Rainbow framework [28]. It supports the reuse of
adaptation strategies and infrastructure across systems by the sep-
aration of a generic adaptation infrastructure from system-specific
knowledge. Software developers use a language, called Stitch [18],
to represent the adaptive strategies and express the business ob-
jectives. The framework then selects a strategy that has optimal
utility in a given context. There are also works on proactive self-
adaptation [49], self-protection in antagonistic environments [75],
and maintaining robustness [10]. The goal of such frameworks is to
reuse the adaption infrastructure across different software systems.
A human, however, still specifies strategies for their systems using
their domain knowledge. This includes which actions the system
can take under what conditions, and the expected cost/benefit of
such actions on multiple dimensions.

8 CONCLUSION

Self-driving DBMSs will enable organizations to deploy database
applications that are more complex than what is possible today, and
at a lower hardware and personnel costs. Achieving full autonomy
(i.e., Level 5 from Section 2) has two tracts of research: (1) novel ML
approaches for value and policy functions and (2) novel DBMS ar-
chitectures that are amenable to autonomous control. These efforts
are symbiotic; one cannot make strides in one without an under-
standing of the other. Thus, this paper presented design principles
based on our experiences in the NoisePage DBMS.

One final point that we would like to make is that we believe that
self-driving DBMSs will not supplant DBAs. We instead envision
autonomous systems will relieve them from the burdens of arduous
low-level tuning and allow them to pursue higher minded tasks,
such as database design and development.
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