摘要:本文聚焦基于 OpenCV 的物体识别与分拣系统实战应用,针对电子元器件、汽车零部件分拣场景,采用 SIFT 或 ORB 算法提取关键点实现目标识别,结合 EtherCAT 总线与伺服电机完成动态控制。详细阐述开发环境搭建、硬件准备、图像采集处理、特征匹配、分拣控制等实操流程,并给出完整代码。实际应用显示,该系统分拣速度达 1200 片 / 小时,错误率低于 0.5%,支持多品种混线生产,为制造业自动化提供有效方案。
【OpenCV 计算机视觉典型应用】 物体识别与分拣系统实战应用
关键词:OpenCV;物体识别;分拣系统;特征提取;EtherCAT 总线;伺服电机;多品种混线生产
一、引言
在当今自动化生产蓬勃发展的时代,高效、准确的物体识别与分拣系统对于提高生产效率、降低成本以及保障产品质量起着至关重要的作用。尤其是在电子元器件制造和汽车零部件生产等行业,面