OpenFHE(Open Fully Homomorphic Encryption)是基于全同态加密(FHE)技术的开源项目,允许数据在加密状态下直接进行计算,无需解密,从而确保数据隐私和安全。其核心优势在于密文计算的同时保护数据隐私,这使得它在多个对数据安全和隐私敏感的领域具有广泛应用场景。
OpenFHE的前身是PALISADE,而PALISADE又采用了DARPA Proceed项目中Sipher软件库的开放模块化设计原则。Sipher的开发始于2010年,专注于模块化开放设计原则,以支持在多种全同态加密(FHE)方案和硬件加速器后端(包括移动、FPGA和基于CPU的计算系统)上快速部署应用程序。2014年,PALISADE在早期Sipher设计的基础上开始构建,2017年开源发布,之后每6个月都有重大改进。PALISADE的开发最初由DARPA的Proceed和Safeware项目资助,后续的改进由DARPA的其他项目、IARPA、NSA、NIH、美国海军、斯隆基金会以及Duality Technologies等商业实体资助。
2022年7月,PALISADE的作者以及HElib、HEAAN和FHEW库的部分作者发布了新的OpenFHE库。其初始版本包含了PALISADE v1.11的所有功能,并增加了一些新的设计特性,如针对多种硬件加速后端的硬件加速层和新的自举程序。2022年9月,据Duality技术公司的新闻稿,谷歌已将其在GitHub上开源的使用XLS SDK开发的开源项目完全同态加密(FHE)转译器与OpenFHE合并,加速了FHE市场的采用。
2024年,OpenFHE不断发展和完善,于10月30日发布了v1.2.3稳定版本。作为一个社区驱动的开源项目,OpenFHE由不同的贡献者群体开发,并正式隶属于NumFocus稳定的开源软件项目,遵循双条款BSD开源许可证,旨在提供更简单的API、模块化、跨平台支持和硬件加速器集成,推动FHE技术的实用化和广泛应用。此外在2024年4月,Fair Math提议建立一个名为FHERMA的竞赛平台,该平台是与OpenFHE合作开发的,计划于2024年通过FHERMA平台发起超过25个FHE相关的技术挑战,进一步推动该领域的研究和应用发展。
一、OpenFHE 的核心组成部分
- 密钥生成系统
功能:生成加密密钥(公钥、私钥)和评估密钥(用于同态计算)。
1)主密钥对:公钥用于加密数据,私钥用于解密结果。
2)评估密钥:包含密钥转换信息(如重线性化密钥、自举密钥),支持密文上的复杂运算。
3)密钥管理:支持密钥撤销、更新和分层密钥结构(如多用户场景)。 - 加密与解密算法
功能:将明文转换为密文(加密),以及将计算后的密文还原为明文(解密)。
基于格密码学(Lattice-based Cryptography),如 RLWE(Ring Learning With Errors)问题。
支持不同的加密方案,如 BFV(Brakerski-Fan-Vercauteren)、CKKS(Cheon-Kim-Kim-Song)等,适用于不同场景(整数或浮点数运算)。 - 同态运算引擎
功能:在密文上执行加法、乘法等运算,支持复杂计算的组合。
1)基本运算:密文加法(对应明文加法)、密文乘法(对应明文乘法)。
2)深度控制:每次乘法增加密文 “噪声”,需通过技术(如自举或重线性化)控制噪声增长,确保计算正确性。 - 自举(Bootstrapping)技术
功能:降低密文噪声,使复杂计算成为可能。
通过自举操作 “刷新” 密文,恢复计算能力。OpenFHE 优化了自举效率,如使用批处理技术(Batch Encoding)并行处理多个数据。 - 硬件加速层
功能:支持 GPU、FPGA 等硬件加速,提升计算效率。
针对特定硬件架构优化算法,如使用 CUDA 加速 GPU 计算。提供统一 API,屏蔽底层硬件差异。
二、OpenFHE 的技术特点
- 多方案支持
兼容多种 FHE 方案,如:
BFV:适用于整数运算,如隐私保护的数据库查询。
CKKS:支持浮点数和近似运算,适合机器学习和数据分析。
BGV(Brakerski-Gentry-Vaikuntanathan):平衡计算效率和功能。 - 模块化设计
组件松耦合:密钥生成、加密、运算等模块可独立替换或扩展。
跨平台支持:支持 Linux、Windows、macOS 等操作系统,以及云环境部署。 - 高性能优化
算法优化:采用 NTT(Number Theoretic Transform)加速多项式运算。
批处理技术:通过 SIMD(单指令多数据)并行处理多个数据元素,提升吞吐量。
硬件协同:与 GPU/FPGA 深度集成,显著降低计算延迟(如在特定任务上提速 10-100 倍)。 - 安全特性
基于格的安全性:依赖格问题(如 RLWE)的困难性,抗量子计算攻击。
密钥隔离:评估密钥与解密密钥分离,防止恶意使用。
安全证明:核心算法提供严格的密码学安全证明。 - 易用性与生态集成
Python/C++ API:提供友好的编程接口,支持快速开发。
与现有框架集成:如 TensorFlow、PyTorch,支持加密数据上的机器学习。
文档与工具链:提供详细文档、示例代码和性能分析工具。
三、面临挑战
- 计算效率:全同态加密的计算开销较高,复杂运算(如深度学习)可能需要数小时甚至数天,需通过硬件加速(如GPU、FPGA)或算法优化提升性能。
- 密钥管理:大规模应用中,密钥的生成、存储和分发复杂度高,需结合密钥管理系统(KMS)简化流程。
- 标准化与生态建设:需推动OpenFHE与其他隐私计算技术(如MPC、TEE)的融合,构建统一的技术标准和开发生态。
四、应用场景
- 隐私保护的数据分析与建模
场景:银行或金融机构需对客户数据(如交易记录、信用信息)进行联合分析或建模(如风险评估、反欺诈),但传统方式需共享明文数据,存在隐私泄露风险。
OpenFHE的价值:各机构可在本地加密数据,通过OpenFHE直接对加密数据进行联合统计(如求和、平均值)或机器学习训练(如逻辑回归、神经网络)。结果解密后仅暴露必要信息(如风险评分),原始数据始终保密。
案例:多个银行联合构建信用评分模型,无需共享客户明细数据即可完成建模。 - 加密状态下的交易验证
场景:区块链或数字货币交易中,需验证交易合法性(如余额是否充足),同时保护交易金额和账户信息。
OpenFHE的价值:交易金额加密后,通过OpenFHE直接在密文上验证“余额 ≥ 交易金额”,避免明文数据暴露。适用于隐私保护型区块链(如Zcash的扩展场景)。 - 医疗数据的隐私计算与共享
场景:医院、药企或研究机构需分析多中心医疗数据(如病历、基因数据),但受隐私法规(如HIPAA、GDPR)限制,无法直接共享明文数据。
OpenFHE的价值:允许对加密的医疗数据进行统计分析(如疾病发病率计算)、基因组匹配或药物研发建模。支持联邦学习在医疗领域的应用,各机构在本地加密数据上训练模型,仅共享模型参数更新,保护患者隐私。
案例:全球多医院联合研究癌症标志物,无需传输患者原始基因数据即可完成模型训练。 - 远程医疗与可穿戴设备
场景:可穿戴设备实时采集用户健康数据(如心率、血糖),需传输至云端分析,但数据传输和存储过程中存在泄露风险。
OpenFHE的价值:数据在设备端加密后上传,云端通过OpenFHE直接对密文进行异常检测(如心率异常预警),结果解密后反馈给用户或医生。避免云端服务器存储明文数据,降低数据泄露风险。 - 加密数据上的模型推理
场景:AI服务提供商需为客户提供模型推理服务(如图像识别、自然语言处理),但客户不希望原始数据(如图像、文本)暴露给服务方。
OpenFHE的价值:客户数据加密后输入模型,服务方使用OpenFHE在密文上运行推理算法,输出加密结果,客户解密后获得最终结论(如“图像中包含猫”)。适用于隐私优先的AIaaS(人工智能即服务)场景,如医疗影像分析、金融数据风控。 - 联邦学习的安全增强
联邦学习:多参与方在不共享数据的前提下联合训练模型,传统联邦学习需传输模型参数,可能面临参数逆向攻击。
OpenFHE的价值:对模型参数进行加密传输,结合OpenFHE的同态计算能力,在参数聚合阶段直接对加密参数进行求和、平均等操作,进一步提升联邦学习的安全性。 - 加密数据的云存储与计算
场景:企业或个人将数据存储在公有云(如AWS、Azure),需确保数据在存储和计算过程中始终加密,防止云服务商或第三方窃取。
OpenFHE的价值:数据加密后上传至云端,云服务器使用OpenFHE直接对密文进行处理(如数据检索、统计分析、文件压缩),结果加密返回给用户。实现“数据可用不可见”,满足合规要求(如数据不出境)。
8 多方安全计算(MPC)的补充
多方安全计算:多个参与方协同计算,确保任何一方无法获取其他方的输入数据。
OpenFHE的价值:与MPC结合,提供更灵活的安全计算方案。例如,在MPC中对部分计算环节使用OpenFHE的同态特性,减少通信开销或提升计算效率。 - 智能设备的隐私保护
场景:智能家居设备(如摄像头、智能电表)采集用户数据,需在边缘端或云端进行处理,但用户不希望数据明文传输或存储。
OpenFHE的价值:设备端加密数据后,通过OpenFHE在边缘服务器或云端直接对密文进行实时处理(如视频分析检测异常行为、电表数据统计),结果解密后仅反馈关键信息(如“检测到入侵”)。降低物联网设备的数据泄露风险,尤其适用于工业物联网(IIoT)中的设备监控和预测性维护。 - 人口统计与公共政策分析
场景:政府部门需分析人口数据(如收入、教育水平)以制定政策,但需保护个人隐私。
OpenFHE的价值:对加密的人口数据进行统计分析(如平均收入、就业率计算),避免泄露个体信息。支持跨部门的数据协作,如卫生部门与交通部门联合分析疫情期间的出行模式,无需共享原始数据。 - 选举与投票系统
场景:电子投票系统需确保选票匿名性和计票正确性,防止篡改或泄露。
OpenFHE的价值:选票加密后提交,通过OpenFHE在密文上统计票数,最终解密公布结果,确保过程透明且隐私不可追溯。
五、结言
随着技术进步和行业需求的增长,OpenFHE有望在隐私计算、可信AI、数据要素流通等领域发挥更核心的作用,成为保障数据安全与隐私的关键基础设施。