IM 敏感词过滤, 方案有哪些?
10万QPS下如何保证过滤延迟<50ms?
如何设计支持实时更新的敏感词服务?
10万QPS,如何设计敏感词服务,还要支持 实时更新的?
前几天 小伙伴面试阿里,遇到了这个问题。但是由于 没有回答好,导致面试挂了。
小伙伴面试完了之后,来求助尼恩。那么,遇到 这个问题,该如何才能回答得很漂亮,才能 让面试官刮目相看、口水直流。
所以,尼恩给大家做一下系统化、体系化的梳理,使得大家内力猛增,可以充分展示一下大家雄厚的 “技术肌肉”,让面试官爱到 “不能自已、口水直流”,然后实现”offer直提”。
当然,这道面试题,以及参考答案,也会收入咱们的 《尼恩Java面试宝典》V145版本PDF集群,供后面的小伙伴参考,提升大家的 3高 架构、设计、开发水平。
最新《尼恩 架构笔记》《尼恩高并发三部曲》《尼恩Java面试宝典》的PDF,请关注本公众号【技术自由圈】获取,后台回复:领电子书
IM 敏感词过滤方案有哪些?
敏感词过滤功能在很多地方都会用到,理论上在Web应用中,只要涉及用户输入的地方,都需要进行文本校验,如:IM消息、XSS校验、SQL注入检验、敏感词过滤等。今天着重讲讲如何优雅高效地实现敏感词过滤。
敏感词过滤在IM消息、社区发帖、网站检索、短信发送等场景下是很常见的需求,尤其是在高并发场景下如何实现敏感词过滤,都对过滤算法提出了更高的性能要求,几种常见的敏感词过滤方案对比如下:
维度 | 暴力循环 | Trie树 | AC自动机 |
时间复杂度 | O(n×m) | O(L) | O(n) |
空间占用 | O(1) | 高(GB级) | 高(需失败指针) |
适用规模 | ≤100词 | ≤10万词 | ≥10万词 |
-
暴力循环 → Trie树:解决前缀共享问题
-
Trie树 → AC自动机:通过状态转移消除回溯,引入失败指针实现多模式并行匹配
暴力匹配(BF)匹配算法
此方案使用BF 算法(Brute-Force算法),或蛮力算法,是一种基础的字符串匹配算法。
简单来说就是对于要进行检测的文本,遍历所有敏感词,逐个检测输入的文本中是否含有指定的敏感词。
先引入两个术语:主串和模式串。简单来说,我们要在字符串 A 中查找子串 B,那么 A 就是主串,B 就是模式串。
作为最简单、最暴力的字符串匹配算法,BF 算法的思想可以用一句话来概括,那就是,如果主串长度为 n,模式串长度为 m,我们在主串中检查起始位置分别是 0、1、2…n-m 且长度为 m 的 n-m+1 个子串,看有没有跟模式串匹配的。图示如下:
结合上图,具体来说,就是每次拿模式串和主串对齐,然后从左到右依次比较每个字符,如果出现不相等,则把模式串往后移一个位置,再次重复上述步骤,直到模式串每个字符与对应主串位置字符都相等,则返回主串对应下标,表示找到,否则返回 -1,表示没找到
这个算法很好理解,因为这就是我们正常都能想到的暴力匹配,BF 算法的时间复杂度最差是 O(n*m)
(n为主串长度,m为模式串长度),意味着要模式串要移到主串 n-m
的位置上,并且模式串每个字符都要与子串比较。
尽管 BF 算法复杂度看起来很高,但是在日常开发中,如果主串和模式串规模不大的话,该算法依然比较常用,因为足够简单,实现起来容易,不容易出错。在规模不大的情况下,开销也可以接受,毕竟 O(n*m)
是最差的表现,大部分时候,执行效率比这个都要高。
但是对于对时间要求比较敏感,或者需要高频匹配,数据规模较大的情况下,比如编辑器中的匹配功能、敏感词匹配系统等,BF 算法就不适用了。
参考实现:
@Test
public void test1(){
Set<String> sensitiveWords=new HashSet<>();
sensitiveWords.add("shit");
sensitiveWords.add("傻蛋");
sensitiveWords.add("笨蛋");
String text="你是傻蛋啊";
for(String sensitiveWord:sensitiveWords){
if(text.contains(sensitiveWord)){
System.out.println("输入的文本存在敏感词。——" + sensitiveWord);
break;
}
}
}
暴力循环匹配 的不足
代码十分简单,也确实能够满足要求。但是这个方案有一个很大的问题是,随着敏感词数量的增多,敏感词检测的时间会呈线性增长。
由于之前的项目的敏感词数量只有几十个,所以使用这种方案不会存在太大的性能问题。但是如果项目中有成千上万个敏感词,使用这种方案就会很耗CPU了。
KMP算法(Knuth Morris Pratt 算法)
KMP 算法可以说是字符串匹配算法中最知名的算法了,KMP 算法是根据三位作者(D.E.Knuth,J.H.Morris 和 V.R.Pratt)的名字来命名的,算法的全称是 Knuth Morris Pratt 算法,简称为 KMP 算法。
与暴力匹配算法相比,KMP 算法在时间复杂度上有显著的优化,使得它在实际应用中得到了广泛的应用。
KMP 算法是一种基于 部分匹配表(next 数组) 的字符串匹配算法,通过预处理模式串的重复前后缀信息,避免主串指针回溯,将暴力匹配的最坏时间复杂度从 O(mn) 优化到 O(m+n)。
其核心思想是 利用已匹配信息跳过无效比较,通过 next 数组确定失配时的跳转位置
KMP 算法的核心思想
假设主串是 a
,模式串是 b
。
在模式串与主串匹配的过程中,当遇到不可匹配的字符的时候,我们希望找到一些规律,可以将模式串往后多滑动几位,跳过那些肯定不会匹配的情况,从而避免 BF 算法这种暴力匹配,提高算法性能。
举个例子,假设:
-
主串(文本)为:
"ABABABCABABABD"
-
模式串(要找的词)为:
"ABABD"
普通暴力匹配(BF算法):
(1) 主串和模式串从头开始对比: ABABA
(主串) vs ABABD
(模式串) ,发现 前4个字符ABAB
匹配,但第5个字符A
(主串)≠ D
(模式串),所以,匹配失败。(2) 暴力法会回退:主串从第2个字符B
开始重新对比,模式串从头开始。
KMP的聪明做法:
1、发现前4个字符ABAB匹配,但第5个字符失败时,KMP会问:
已匹配的ABAB
中,最长的相同 前后缀是什么?
-
ABAB
的 前缀有: A 、AB
、 ABA ; -
ABAB
的 后缀有:B
、AB
、BAB
最长 公共前后缀是AB
,长度=2
2、直接让模式串的 AB 对齐 主串已匹配部分的 AB , 跳过无效对比:
主串:ABABABCABABABD
↓ 模式串从第3个字符继续匹配(ABABD
的第3个字符A
对齐主串C
的位置)
模式串: ABABD
-
主串指针不后退,模式串利用
next
数组智能跳跃。
关键点:
-
next
数组记录模式串的“自相似性”(比如ABAB
中AB
重复)。 -
匹配失败时,模式串按
next
值滑动,主串永不回退。
就像用尺子量布时,发现一段花纹重复,直接跳过已知重复部分继续量,省时高效
什么是 next指针
next指针就像"错题本"
假设你在背单词:"ABABD"(模式串),背到第5个字母时卡壳了。next指针会告诉你:
(1) 前面背对的"ABAB"里,开头的"AB"和结尾的"AB"是重复的
(2) 下次直接从第3个字母"A"开始接着背(不用重头背!)
具体来说:
-
当匹配失败时,next值告诉你: ✓ 模式串该往右滑多远(比如next=2,就滑到模式串第3个字符继续比) ✓ 主串不用回退(像传送带一样只往前走)
关键操作:next数组的生成
-
预处理模式串生成
next数组
(类似创建"跳转地图") -
匹配失败时 根据
next数组
跳转,主串指针不后退
以模式串ABCDABD
为例,计算每个位置的next值
:
位置 | 字符 | 前缀 | 后缀 | 最长公共前后缀长度 | next值 |
0 | A | 无 | 无 | 0 | -1 |
1 | B | A | B | 0 | 0 |
2 | C | A,AB | BC,C | 0 | 0 |
3 | D | A,AB,ABC | BCD,CD,D | 0 | 0 |
4 | A | A,AB,ABC,ABCD | BCDA,CDA,DA,A | 1(前缀A=后缀A) | 0 |
5 | B | A,AB,...,ABCDA | BCDAB,...,B | 前缀AB=后缀AB → 2 | 1 |
6 | D | A,...,ABCDAB | BCDABD,...,D | 0 | 2 |
最终next数组:[-1, 0, 0, 0, 0, 1, 2]
KMP匹配过程演示
回到最初的失败场景:
主串:ABCDABE...
模式:ABCDABD(前6字符匹配,第7字符不匹配,E≠D)
根据next数组
,失败位置是模式串的第6位(索引6),对应的next[6]=2
。
这意味着:
(1) 模式串右移位数 = 已匹配字符数 - next值 → 6 - 2 = 4位
(2) 模式串指针回退到 next[6]=2
的位置(即模式串的第3个字符C
)
移动后的对比:
对比过程:
-
主串的
E
继续和模式串的新位置 第3 个字符C
对比(主串指针未回退!) -
模式串的
C
与主串E
不匹配 → 再次根据next[2]=0
跳转
对比KMP和BF的效率
暴力匹配(BF):
-
在第1次失败后,需要对比6次无效位置(模式串滑动1位后对比6次才能发现不匹配)
KMP算法:
-
直接跳过了4个位置,避免了这6次无效对比
-
主串指针始终向前(从位置6继续,无需回退到位置1)
把模式串想象成一个带弹簧的尺子:
(1) next数组像是弹簧的弹力系数(2) 每当遇到不匹配,弹簧会根据next值
自动收缩到合适长度(3) 主串像传送带一样单向移动,无需倒退重走
最终效果:KMP的时间复杂度是O(n+m)
,而暴力匹配是O(n×m)
!
KMP 算法的应用场景
KMP 算法的预处理阶段时间复杂度为 O(m),其中 m 是模式串的长度。
在匹配阶段,文本串和模式串的指针都只会单向移动,不会出现回溯的情况,因此匹配阶段的时间复杂度也是 O(n + m),其中 n 是文本串的长度。这使得 KMP 算法在处理大规模数据时具有较高的效率,相比暴力匹配算法的 O(n * m) 时间复杂度,KMP 算法在大多数情况下能够提供更快的匹配速度。
KMP 算法广泛应用于文本编辑器中的查找和替换功能、搜索引擎中的关键词匹配、生物信息学中的 DNA 序列分析等领域。例如,在文本编辑器中,当用户使用查找功能时,KMP 算法能够快速定位到目标文本的位置,从而提高用户体验。
KMP 算法作为一种经典的字符串匹配算法,凭借其高效性和稳定性,在众多领域发挥着重要作用。理解 KMP 算法的原理和实现,有助于我们更好地解决实际问题中的字符串匹配需求。
智能索引 Trie树
什么是trie树
Trie 树,也叫“字典树”。
顾名思义,它是一个树形结构。它是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题。
我们有 6 个字符串,它们分别是:how,hi,her,hello,so,see。
我们希望在里面多次查找某个字符串是否存在。
如果使用BF算法,都是拿要查找的字符串跟这 6 个字符串依次进行字符串匹配,那效率就比较低,有没有更高效的方法呢?
这个时候,我们就可以先对这 6 个字符串做一下预处理,组织成 Trie 树的结构,之后每次查找,都是在 Trie 树中进行匹配查找。Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起。最后构造出来的就是下面这个图中的样子。
其中,根节点不包含任何信息。每个节点表示一个字符串中的字符,从根节点到红色节点的一条路径表示一个字符串(注意:红色节点并不都是叶子节点)。
Trie 树是怎么构造出来的?
当我们在 Trie 树中查找一个字符串的时候,比如查找字符串“her”,那我们将要查找的字符串分割成单个的字符 h,e,r,然后从 Trie 树的根节点开始匹配。如图所示,绿色的路径就是在 Trie 树中匹配的路径
如果我们要查找的是字符串“he”呢?我们还用上面同样的方法,从根节点开始,沿着某条路径来匹配,如图所示,绿色的路径,是字符串“he”匹配的路径。但是,路径的最后一个节点“e”并不是红色的。也就是说,“he”是某个字符串的前缀子串,但并不能完全匹配任何字符串。
Trie树 与 暴力匹配(BF)的对比
相比于暴力匹配(BF)算法,Trie树的优势主要体现在以下方面:
(1)时间复杂度优化:BF算法每次匹配需完整遍历主串和模式串,时间复杂度为O(n×m),而Trie树通过前缀共享将查询时间降至O(k)(k为模式串长度),适合高频查询场景(如搜索引擎关键词提示)
(2)多模式串处理能力:BF需对每个模式串单独匹配,而Trie树可一次性存储所有模式串,实现多模式串的并行匹配(如敏感词过滤),避免重复计算。
(3)功能扩展性:Trie树天然支持前缀匹配、最长前缀查找等功能,而BF仅支持完整匹配。例如输入法联想提示、路由表最长前缀匹配等场景必须依赖Trie结构。
(4)预处理优势:Trie树通过预先构建字符路径,牺牲空间换取查询效率,尤其适合静态词库(如字典);而BF每次匹配均需从头计算,无法复用历史结果。
BF -> Trie树演进本质:Trie树通过空间换时间和结构化存储,解决了BF算法在处理多模式串、前缀匹配时的低效问题,是算法设计从“暴力遍历”到“智能索引”的典型演进。
Trie 树的实现敏感词过滤
Trie 树主要有两个操作
(1)将字符串集合构造成 Trie 树。这个过程分解开来的话,就是一个将字符串插入到 Trie 树的过程。
(2)然后是在 Trie 树中查询一个字符串。
trie树实现敏感词过滤参考代码:
/
* 敏感词过滤器核心类,基于Trie树实现高效匹配
* 特点:支持中文敏感词检测,时间复杂度O(n)
/
public class SensitiveWordFilter {
// Trie树根节点(空节点)
private final TrieNode root = new TrieNode();
// 敏感词替换字符串
private static final String REPLACEMENT = "";
/
* Trie树节点静态内部类
* 采用HashMap存储子节点实现动态扩展
/
private static class TrieNode {
// 子节点映射表 <字符, 对应子节点>
Map<Character, TrieNode> children = new HashMap<>();
// 标记当前节点是否为某个敏感词的结尾
boolean isEnd;
}
/
* 加载敏感词库构建Trie树
* @param keywords 敏感词集合
*/
public void loadKeywords(Set<String> keywords) {
for (String word : keywords) {
TrieNode node = root; // 从根节点开始构建
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
// 如果当前字符不存在于子节点,则新建分支
if (!node.children.containsKey(c)) {
node.children.put(c, new TrieNode());
}
// 移动到下一级节点
node = node.children.get(c);
}
// 标记敏感词结束位置
node.isEnd = true;
}
}
/
* 执行敏感词过滤主方法
* @param text 待过滤文本
* @return 过滤后的安全文本
/
public String filter(String text) {
StringBuilder result = new StringBuilder();
int start = 0; // 文本扫描起始位置
while (start < text.length()) {
// 检测从start位置开始的敏感词
int matchLength = checkSensitiveWord(text, start);
if (matchLength > 0) {
// 存在敏感词则替换
result.append(REPLACEMENT);
start += matchLength; // 跳过已检测部分
} else {
// 无敏感词则保留原字符
result.append(text.charAt(start++));
}
}
return result.toString();
}
/
* 检查指定位置开始的敏感词
* @param text 待检测文本
* @param startIndex 检测起始位置
* @return 匹配到的敏感词长度(未匹配返回0)
/
private int checkSensitiveWord(String text, int startIndex) {
TrieNode tempNode = root;
int matchLength = 0;
for (int i = startIndex; i < text.length(); i++) {
char c = text.charAt(i);
// 当前字符不匹配时终止检测
if (!tempNode.children.containsKey(c)) {
break;
}
// 移动到下一级节点
tempNode = tempNode.children.get(c);
matchLength++;
// 遇到结束标记说明匹配成功
if (tempNode.isEnd) {
return matchLength;
}
}
return 0; // 未匹配到完整敏感词
}
// 测试用例
public static void main(String[] args) {
SensitiveWordFilter filter = new SensitiveWordFilter();
// 模拟敏感词库
Set<String> sensitiveWords = new HashSet<>();
sensitiveWords.add("暴力");
sensitiveWords.add("敏感词");
sensitiveWords.add("测试");
// 构建Trie树
filter.loadKeywords(sensitiveWords);
// 测试过滤效果
String testText = "这是一段包含暴力内容和敏感词的测试文本";
System.out.println(filter.filter(testText));
// 输出:这是一段包含‌内容和‌的文本
}
}
在 Trie 树中,查找某个字符串的时间复杂度是多少?
如果要在一组字符串中,频繁地查询某些字符串,用 Trie 树会非常高效。
构建 Trie 树的过程,需要扫描所有的字符串,时间复杂度是 O(n)(n 表示所有字符串的长度和)。
但是一旦构建成功之后,后续的查询操作会非常高效。
构建好 Trie 树后,在其中查找字符串的时间复杂度是 O(k),k 表示要查找的字符串的长度。
实现了Trie树的开源框架
可以看出, Trie 树的核心原理其实很简单,就是通过公共前缀来提高字符串匹配效率。
Apache Commons Collections这个库中就有 Trie 树实现:
Trie<String, String> trie = new PatriciaTrie<>();
trie.put("Abigail", "student");
trie.put("Abi", "doctor");
trie.put("Annabel", "teacher");
trie.put("Christina", "student");
trie.put("Chris", "doctor");
Assertions.assertTrue(trie.containsKey("Abigail"));
assertEqual
s("{Abi=doctor, Abigail=student}", trie.prefixMap("Abi").toString());
assertEquals("{Chris=doctor, Christina=student}", trie.prefixMap("Chr").toString());
双数组 Trie 树(Double-Array Trie,DAT)
Trie 树是一种利用空间换时间的数据结构,占用的内存会比较大。
也正是因为这个原因,实际工程项目中都是使用的改进版 Trie 树例如双数组 Trie 树(Double-Array Trie,DAT)。
DAT 的设计者是日本的 Aoe Jun-ichi,Mori Akira 和 Sato Takuya,他们在 1989 年发表了一篇论文《An Efficient Implementation of Trie Structures》,详细介绍了 DAT 的构造和应用,
原作者写的示例代码地址:https://github.com/komiya-atsushi/darts-java/blob/e2986a55e648296cc0a6244ae4a2e457cd89fb82/src/main/java/darts/DoubleArrayTrie.java。
相比较于 Trie 树,DAT 的内存占用极低,可以达到 Trie 树内存的 1%左右。
DAT 在中文分词、自然语言处理、信息检索等领域有广泛的应用,是一种非常优秀的数据结构。
Trie树的局限性
传统Trie树在处理敏感词匹配时存在以下核心缺陷:
(1)回溯成本高:当字符匹配失败时需退回到根节点重新匹配,导致对同一文本位置多次扫描,时间复杂度达 O(n×m)(n为文本长度,m为敏感词最大长度)
(2)多模式匹配低效:逐个敏感词独立判断,无法利用词汇间的关联性
(3)长尾性能劣化:敏感词库规模增大时,匹配耗时线性增长,难以应对工业级海量词库场景
AC自动机
什么是AC自动机?
简单理解AC自动机 就是 Tire树 + KMP,
关于KMP算法,可以参考网上文章,其实就是trie树 + 失配指针(下图动画中的虚线)
下面是对AC自动机构建过程的详细介绍:
-
构建Trie树:首先构建一个Trie树,用于存储所有字符串。每个节点代表一个字符,从根节点到任意节点的路径代表一个字符串的前缀。
-
创建失配指针(Failure Pointers):这些指针指向Trie树中的另一节点,当在某一节点上的字符匹配失败时,算法会通过失效指针跳转到另一节点继续匹配,而不是从头开始。
-
搜索:在给定文本中进行搜索时,AC自动机沿着Trie树移动,同时在匹配失败时 , 使用Failure Pointer 失效指针进行快速跳转。
为什么用AC自动机
AC自动机(Aho-Corasick算法)是一种用于字符串搜索的算法,它能够高效地在一段文本中查找多个模式串/字符串。
这个算法由Alfred V. Aho和Margaret J. Corasick于1975年共同提出。
AC自动机优化了字典树匹配的过程:在字典树的暴力匹配过程中,每当匹配失败,就会从下一个位置重新开始匹配,这导致了重复的匹配操作。
为了提高效率,AC自动机算法借鉴KMP算法的思想,通过在每个节点添加一个失配链接点,使得在匹配失败后能直接跳转到相应的下一个节点进行判断,从而避免重复的判断过程。
-
在 Trie匹配过程中,一些模式串之间存在一部分重叠,也就意味着在匹配 sherhs 过程,
-
如果能匹配到点1,后续一定可以匹配到点2
-
如果在点1向下匹配失败时候,可以直接跳到点2,继续向下匹配
-
通过增加两点之间联系,减少回溯过程
-
关联的条件是1的后缀与2的前缀相同(类似 KMP 思想)
AC自动机的优势
AC自动机通过两项核心改进突破Trie树瓶颈:
(1)Fail指针机制
-
KMP思想的移植: 为每个节点预计算最长可复用后缀对应的状态(Fail指针),匹配失败时直接跳转而非回溯,消除重复扫描。
-
跳转逻辑示例:若敏感词集包含
she
和he
,当文本出现she
时,匹配到e
节点触发he
的终止状态,无需重新从h
开始。
(2)多模式并行匹配
-
单次文本扫描即可检测所有敏感词,时间复杂度降至 O(n)(与词库规模无关,n为文本长度)
-
通过构建Trie树时预置Fail指针(BFS遍历实现),确保匹配阶段无回溯
性能对比
维度 | Trie树 | AC自动机 |
时间复杂度 | O(n*m)(n为文本长度,m为敏感词最大长度) | O(n)(n为文本长度) |
空间利用率 | 共享前缀节省空间 | 增加Fail指针存储,但整体仍优于哈希表 |
适用场景 | 小规模词库、低并发场景 | 万级词库、高并发实时过滤(如社交平台) |
扩展性 | 无法处理模糊匹配 | 结合Wildcard优化可支持通配符 |
开源的AC自动机实现
基于双数组 Trie 结构的 Aho Corasick 算法的极速实现。
其速度是简单实现的 5 到 9 倍,或许是目前最快的实现
AhoCorasickDoubleArrayTrie:https://github.com/hankcs/AhoCorasickDoubleArrayTrie
用法:
<dependency>
<groupId>com.hankcs</groupId>
<artifactId>aho-corasick-double-array-trie</artifactId>
<version>1.2.3</version>
</dependency>
// Collect test data set
TreeMap<String, String> map = new TreeMap<String, String>();
String[] keyArray = new String[]
{
"hers",
"his",
"she",
"he"
};
for (String key : keyArray)
{
map.put(key, key);
}
// Build an AhoCorasickDoubleArrayTrie
AhoCorasickDoubleArrayTrie<String> acdat = new AhoCorasickDoubleArrayTrie<String>();
acdat.build(map);
// Test it
final String text = "uhers";
List<AhoCorasickDoubleArrayTrie.Hit<String>> wordList = acdat.parseText(text);
测试结果:
AhoCorasickDoubleArrayTrie 与 robert-bor 的 aho-corasick 进行了比较,ACDAT 代表 AhoCorasickDoubleArrayTrie,Naive 代表 aho-corasick,结果是:
Parsing English document which contains 3409283 characters, with a dictionary of 127142 words.
Naive ACDAT
time 607 102
char/s 5616611.20 33424343.14
rate 1.00 5.95
===========================================================================
Parsing Chinese document which contains 1290573 characters, with a dictionary of 146047 words.
Naive ACDAT
time 319 35
char/s 2609156.74 23780600.00
rate 1.00 9.11
===========================================================================
在英文测试中,AhoCorasickDoubleArrayTrie 的速度提高了 5 倍。
在中文测试中,AhoCorasickDoubleArrayTrie 的速度提高了 9 倍。
此测试在 i7 2.0GHz 处理器、-Xms512m -Xmx512m -Xmn256m 的环境下进行。
Netty 敏感词过滤的技术选型
在 Netty 框架中实现敏感词过滤时,需综合考虑 性能、内存占用、开发复杂度 等因素。
以下是各算法特性对比与选型建议:
1. 算法特性对比
算法/结构 | 适用场景 | 性能表现 | 内存占用 | 多模式匹配能力 | 实现复杂度 |
BF 算法 | 小规模敏感词库、低频匹配 | O(mn),极端场景下性能急剧下降 | 低 | 不支持 | 极简单 |
Trie 树 | 中等规模词库、前缀匹配需求 | 匹配时间 O(L)(L为字符串长) | 高(空间换时间)14 | 支持 | 中等 |
双数组 Trie (DAT) | 海量敏感词库、内存敏感场景 | 单模式匹配极快,但多模式需多次回溯 | 极低 | 弱支持 | 较高(需处理状态转移) |
AC 自动机 | 大规模词库、实时多模式匹配 | 一次扫描完成全部匹配 O(n)(n为主串长) | 中等(需维护失败指针) | 强支持 | 较高 |
2. 选型决策
根据 Netty 高并发、低延迟的特性,推荐优先级如下:
首选方案:AC 自动机
-
优势
-
多模式匹配效率碾压其他方案,单次文本扫描即可检测所有敏感词。
-
支持动态词库更新(通过重建或增量维护 Trie 树)。
-
可结合内存优化(如压缩 Trie 结构)平衡性能与资源消耗。
-
适用场景
-
需实时过滤大量敏感词(如聊天系统、内容审核)。
-
敏感词数量超过 1 万且需要高频匹配的场景。
次选方案:双数组 Trie (DAT)
-
优势
-
内存占用极低,适合嵌入式或资源受限环境。
-
单模式匹配速度快(如仅需检测少量固定关键词)。
-
局限
-
多模式匹配需多次扫描文本,性能低于 AC 自动机。
不推荐方案
-
Trie 树:内存占用高,且多模式匹配效率低于 AC 自动机。
-
BF 算法:仅适用于测试验证,实际生产环境性能不达标。
3. 开源实现框架参考
-
Java AC 自动机库:
org.ahocorasick
(轻量级,支持 Trie 树构建与多模式匹配) 。 -
双数组 Trie 实现:
com.github.komoot.datrie
(高效 DAT 实现,适用于静态词库) 。
在 Netty 中实现敏感词过滤,AC 自动机是综合最优解,尤其在处理海量敏感词和高并发请求时表现卓越。若对内存有极端限制,可考虑双数组 Trie,但需接受多模式匹配性能损耗。
基于 AC 自动机算法的 Netty 敏感词风控处理器实现
下面是基于 AC 自动机算法的 Netty 敏感词风控处理器实现示例。
当检测到敏感词时,回复“您发送的消息,带有敏感内容”:
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.util.AttributeMap;
import java.util.List;
/
* 敏感词过滤处理器,用于检测入站消息是否包含敏感词
*/
public class SensitiveWordHandler extends ChannelInboundHandlerAdapter {
private AcAutomaton acAutomaton;
/
* 构造函数,传入敏感词列表并构建AC自动机
* @param sensitiveWords 敏感词列表
/
public SensitiveWordHandler(List<String> sensitiveWords) {
acAutomaton = new AcAutomaton();
acAutomaton.build(sensitiveWords); // 构建AC自动机
}
/
* 处理入站消息
* @param ctx 通道处理上下文
* @param msg 入站消息
* @throws Exception 处理过程中可能出现的异常
/
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
AttributeMap msgAttr = (AttributeMap) msg; // 将消息转换为AttributeMap类型
String content = msgAttr.get("content"); // 获取消息中的文本内容
if (acAutomaton.match(content)) { // 调用AC自动机的match方法检测是否包含敏感词
// 如果检测到敏感词,回复提示信息
ctx.writeAndFlush("您发送的消息,带有敏感内容");
return; // 结束当前方法执行,不再向下传递消息
}
ctx.fireChannelRead(msg); // 如果未检测到敏感词,继续将消息传递给下一个处理器
}
}
同时,需要实现 AC 自动机算法的类:
import java.util.List;
import java.util.Map;
import java.util.HashMap;
import java.util.Queue;
import java.util.LinkedList;
/
* 基于AC自动机算法实现敏感词匹配
*/
public class AcAutomaton {
/
* Trie树节点类
/
private static class TrieNode {
Map<Character, TrieNode> children; // 子节点映射,键为字符,值为对应的子节点
String word; // 如果该节点是一个单词的结尾,则存储该单词
TrieNode fail; // 失败指针,用于快速跳转到可能的匹配位置
/
* 构造函数,初始化节点
/
public TrieNode() {
children = new HashMap<>();
word = null;
fail = null;
}
}
private TrieNode root; // AC自动机的根节点
/
* 构造函数,初始化根节点
*/
public AcAutomaton() {
root = new TrieNode();
}
/
* 构建AC自动机
* @param sensitiveWords 敏感词列表
/
public void build(List<String> sensitiveWords) {
// 构建Trie树
for (String word : sensitiveWords) {
TrieNode node = root;
for (char c : word.toCharArray()) { // 遍历敏感词的每个字符
if (!node.children.containsKey(c)) { // 如果当前节点没有该字符对应的子节点
node.children.put(c, new TrieNode()); // 创建新的子节点
}
node = node.children.get(c); // 移动到子节点
}
node.word = word; // 标记该节点为单词结尾
}
// 构建失败指针
Queue<TrieNode> queue = new LinkedList<>(); // 用于广度优先遍历的队列
// 初始化队列,将根节点的子节点加入队列
for (TrieNode child : root.children.values()) {
child.fail = root; // 根节点的子节点的失败指针指向根节点
queue.add(child);
}
while (!queue.isEmpty()) { // 广度优先遍历构建失败指针
TrieNode node = queue.poll(); // 取出队列中的节点
for (Map.Entry<Character, TrieNode> entry : node.children.entrySet()) { // 遍历该节点的所有子节点
TrieNode child = entry.getValue(); // 获取子节点
TrieNode failNode = node.fail; // 获取当前节点的失败指针节点
// 寻找失败指针节点的对应字符子节点
while (failNode != null && !failNode.children.containsKey(entry.getKey())) {
failNode = failNode.fail; // 如果失败指针节点没有对应子节点,则继续向上查找
}
// 设置子节点的失败指针
child.fail = (failNode != null) ? failNode.children.get(entry.getKey()) : root;
queue.add(child); // 将子节点加入队列
}
}
}
/
* 在文本中匹配敏感词
* @param text 要匹配的文本
* @return 如果文本中包含敏感词,则返回true;否则返回false
/
public boolean match(String text) {
TrieNode p = root; // 从根节点开始匹配
for (char c : text.toCharArray()) { // 遍历文本的每个字符
// 如果当前节点不是根节点, 且没有对应字符的子节点,则沿着失败指针回溯
while (p != root && !p.children.containsKey(c)) {
p = p.fail;
}
if (p.children.containsKey(c)) { // 如果当前节点有对应字符的子节点
p = p.children.get(c); // 移动到子节点
}
if (p.word != null) { // 如果当前节点是一个单词结尾,则说明匹配到敏感词
return true;
}
}
return false; // 遍历完整个文本未匹配到敏感词
}
}
在上面的示例代码中:
-
SensitiveWordHandler
类继承自ChannelInboundHandlerAdapter
,用于处理 Netty 通道中的入站消息。 -
在
SensitiveWordHandler
的构造函数中,传入敏感词列表,并构建 AC 自动机。 -
channelRead
方法在通道读取消息时被调用。它从消息对象中获取文本内容,然后使用 AC 自动机进行敏感词匹配。如果匹配到敏感词,则通过ctx.writeAndFlush
方法向客户端回复提示信息“您发送的消息,带有敏感内容”,并终止后续的消息处理流程;如果未匹配到敏感词,则继续将消息传递给下一个处理器。
AcAutomaton
类实现了 AC 自动机算法:
-
使用
TrieNode
类表示 AC 自动机的节点,每个节点包含其子节点映射、对应的单词(当节点是某个敏感词的结尾时)以及失败指针。 -
build
方法用于构建 AC 自动机。首先构建 Trie 树,将所有敏感词插入到树中;然后构建失败指针,使用广度优先搜索的方式为每个节点设置失败指针,以便在匹配过程中能够快速跳转。 -
match
方法用于在文本中匹配敏感词。它从文本的每个字符开始,沿着 AC 自动机的节点进行匹配。如果在某个节点匹配到敏感词(即节点的word
属性不为null
),则返回true
表示存在敏感词。
需要注意的是,这只是一个简单的示例,实际应用中可能需要根据具体的需求对代码进行扩展和完善,例如处理编码问题、支持不同格式的消息、优化性能等。此外,在构建敏感词列表时,应确保敏感词的准确性和完整性,以提高敏感词过滤的效果。
AC 自动机算法 优化
-
异步检测:将敏感词匹配任务提交至独立线程池,避免阻塞 I/O 线程
-
动态加载:通过
WatchService
监控词库文件变更实现热更新 -
分级响应:根据敏感词级别返回不同提示(如警告/直接封禁)
-
日志记录:记录触发敏感词的原始消息和用户信息用于审计
-
模糊匹配:集成正则表达式处理变体敏感词(如拼音、谐音)
1. 异步检测:将敏感词匹配任务提交至独立线程池
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.util.AttributeMap;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SensitiveWordHandler extends ChannelInboundHandlerAdapter {
private AcAutomaton acAutomaton;
private ExecutorService executorService; // 独立线程池
public SensitiveWordHandler(List<String> sensitiveWords, int threadPoolSize) {
acAutomaton = new AcAutomaton();
acAutomaton.build(sensitiveWords);
executorService = Executors.newFixedThreadPool(threadPoolSize); // 创建固定大小的线程池
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
AttributeMap msgAttr = (AttributeMap) msg;
String content = msgAttr.get("content");
// 将敏感词检测任务提交至线程池异步处理
executorService.submit(() -> {
try {
if (acAutomaton.match(content)) {
ctx.writeAndFlush("您发送的消息,带有敏感内容");
}
} catch (Exception e) {
e.printStackTrace();
}
});
ctx.fireChannelRead(msg);
}
@Override
public void channelInactive(ChannelHandlerContext ctx) throws Exception {
executorService.shutdown(); // 当连接关闭时,优雅地关闭线程池
}
}
2. 动态加载:通过 WatchService 监控词库文件变更实现热更新
import java.nio.file.*;
import java.io.IOException;
import java.util.List;
public class SensitiveWordLoader {
private AcAutomaton acAutomaton;
private Path watchPath;
private WatchService watchService;
public SensitiveWordLoader(String sensitiveWordFilePath, List<String> initialSensitiveWords) throws IOException {
acAutomaton = new AcAutomaton();
acAutomaton.build(initialSensitiveWords);
watchPath = Paths.get(sensitiveWordFilePath);
watchService = FileSystems.getDefault().newWatchService();
watchPath.register(watchService, StandardWatchEventKinds.ENTRY_MODIFY); // 监听文件修改事件
startWatching(); // 开始监控文件变化
}
private void startWatching() {
new Thread(() -> {
while (true) {
try {
WatchKey key = watchService.take(); // 获取文件系统通知
for (WatchEvent<?> event : key.pollEvents()) {
WatchEvent.Kind<?> kind = event.kind();
if (kind == StandardWatchEventKinds.ENTRY_MODIFY) {
// 当敏感词文件被修改时,重新加载敏感词
List<String> newSensitiveWords = loadSensitiveWords(watchPath.toString());
acAutomaton.build(newSensitiveWords);
System.out.println("敏感词列表已更新");
}
}
key.reset(); // 重置WatchKey,以便接收下一次通知
} catch (InterruptedException | IOException e) {
e.printStackTrace();
}
}
}).start();
}
private List<String> loadSensitiveWords(String filePath) {
// 实现从文件加载敏感词列表的逻辑
// 这里可以使用BufferedReader等工具类读取文件内容并解析为敏感词列表
return new ArrayList<>(); // 返回空列表作为示例
}
public AcAutomaton getAcAutomaton() {
return acAutomaton;
}
}
3. 分级响应:根据敏感词级别返回不同提示
public class AcAutomaton {
// ...(省略其他代码)
public class SensitiveWordInfo {
String word;
int level; // 敏感词级别
public SensitiveWordInfo(String word, int level) {
this.word = word;
this.level = level;
}
public String getWord() {
return word;
}
public int getLevel() {
return level;
}
}
public void build(List<SensitiveWordInfo> sensitiveWords) {
// 根据SensitiveWordInfo构建AC自动机
// ...(省略其他代码,与之前类似,但需要处理SensitiveWordInfo对象)
}
public SensitiveWordInfo match(String text) {
TrieNode p = root;
for (char c : text.toCharArray()) {
while (p != root && !p.children.containsKey(c)) {
p = p.fail;
}
if (p.children.containsKey(c)) {
p = p.children.get(c);
}
if (p.word != null) {
return new SensitiveWordInfo(p.word, p.level); // 返回匹配的敏感词及其级别
}
}
return null;
}
}
// 在SensitiveWordHandler中使用分级响应
public class SensitiveWordHandler extends ChannelInboundHandlerAdapter {
// ...(省略其他代码)
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
AttributeMap msgAttr = (AttributeMap) msg;
String content = msgAttr.get("content");
executorService.submit(() -> {
try {
SensitiveWordInfo sensitiveWordInfo = acAutomaton.match(content);
if (sensitiveWordInfo != null) {
switch (sensitiveWordInfo.getLevel()) {
case 1:
ctx.writeAndFlush("警告:您的消息包含轻微敏感内容");
break;
case 2:
ctx.writeAndFlush("您的消息违反规定,账号已被封禁");
ctx.close(); // 封禁账号,关闭连接
break;
// 可以添加更多级别和对应的处理逻辑
}
}
} catch (Exception e) {
e.printStackTrace();
}
});
ctx.fireChannelRead(msg);
}
}
4. 日志记录:记录触发敏感词的原始消息和用户信息
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class SensitiveWordHandler extends ChannelInboundHandlerAdapter {
private static final Logger logger = LoggerFactory.getLogger(SensitiveWordHandler.class);
// ...(省略其他代码)
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
AttributeMap msgAttr = (AttributeMap) msg;
String content = msgAttr.get("content");
String userInfo = msgAttr.get("userInfo"); // 假设消息中包含用户信息
executorService.submit(() -> {
try {
SensitiveWordInfo sensitiveWordInfo = acAutomaton.match(content);
if (sensitiveWordInfo != null) {
// 记录日志
logger.warn("检测到敏感词!用户信息:{},原始消息:{},敏感词:{},级别:{}",
userInfo, content, sensitiveWordInfo.getWord(), sensitiveWordInfo.getLevel());
// 根据级别返回提示信息
// ...(省略之前的处理逻辑)
}
} catch (Exception e) {
e.printStackTrace();
}
});
ctx.fireChannelRead(msg);
}
}
5. 模糊匹配:集成正则表达式处理变体敏感词
import java.util.regex.Pattern;
public class AcAutomaton {
// ...(省略其他代码)
public void build(List<SensitiveWordInfo> sensitiveWords) {
// ...(省略其他代码)
// 在构建AC自动机时,可以同时处理正则表达式模式
for (SensitiveWordInfo wordInfo : sensitiveWords) {
String word = wordInfo.getWord();
if (word.startsWith("/") && word.endsWith("/")) { // 简单判断是否为正则表达式模式
String regex = word.substring(1, word.length() - 1);
// 将正则表达式模式转换为对应的字符序列,以便在AC自动机中处理
// 这里需要根据实际需求实现正则表达式模式的转换和处理逻辑
// ...
} else {
// 普通敏感词处理逻辑
// ...
}
}
}
public SensitiveWordInfo match(String text) {
// 首先尝试匹配普通敏感词
TrieNode p = root;
for (char c : text.toCharArray()) {
while (p != root && !p.children.containsKey(c)) {
p = p.fail;
}
if (p.children.containsKey(c)) {
p = p.children.get(c);
}
if (p.word != null) {
return new SensitiveWordInfo(p.word, p.level);
}
}
// 如果普通匹配未找到,尝试正则表达式匹配
for (SensitiveWordInfo wordInfo : sensitiveWords) {
String word = wordInfo.getWord();
if (word.startsWith("/") && word.endsWith("/")) { // 正则表达式模式
String regex = word.substring(1, word.length() - 1);
if (Pattern.matches(regex, text)) { // 使用正则表达式匹配
return new SensitiveWordInfo(word, wordInfo.getLevel());
}
}
}
return null;
}
}
通过以上优化,敏感词检测程序具备了异步检测、动态加载、分级响应、日志记录和模糊匹配等功能。这些改进提高了程序的性能、灵活性和实用性,使其能够更好地适应实际应用场景中的需求。