Semantic Kernel
The latest news from the Semantic Kernel team for developers
Latest posts

Encoding Changes for Template Arguments in Semantic Kernel

In previous versions of the Semantic Kernel, the encoding of template arguments was performed automatically if the argument type was a . The encoding was not applied for custom types, anonymous types, or collections. With the latest changes, we've introduced stricter rules: if automatic encoding is enabled (the default behavior), an exception will now be thrown when complex types are used as arguments. This enforces more secure template rendering by requiring developers to handle encoding manually for complex types and explicitly disable automatic encoding for those variables. This change promotes best practic...

Azure Authentication Changes in Semantic Kernel Python

In previous versions of the Semantic Kernel Python, the default fallback authentication mechanism for Azure services like was from the Azure Identity library. This provided a convenient way to authenticate without explicitly passing credentials, especially during development. However, with the latest package version , this fallback is being removed to encourage more secure and explicit authentication practices. If your code relied on this default behavior, you may encounter errors after updating, and you'll need to make minor code adjustments to continue using credential-based authentication. This post expla...

Guest Blog: Building Multi-Agent Solutions with Semantic Kernel and A2A Protocol

In the rapidly evolving landscape of AI application development, the ability to orchestrate multiple intelligent agents has become crucial for building sophisticated, enterprise-grade solutions. While individual AI agents excel at specific tasks, complex business scenarios often require coordination between specialized agents running on different platforms, frameworks, or even across organizational boundaries. This is where the combination of Microsoft's Semantic Kernel orchestration capabilities and Agent-to-Agent (A2A) protocol creates a powerful foundation for building truly interoperable multi-agent systems. ...

Semantic Kernel Python Gets a Major Vector Store Upgrade

We're excited to announce a significant update to Semantic Kernel Python's vector store implementation. Version 1.34 brings a complete overhaul that makes working with vector data simpler, more intuitive, and more powerful. This update consolidates the API, improves developer experience, and adds new capabilities that streamline AI development workflows. What Makes This Release Special? The new vector store architecture consolidates everything under and delivers three key improvements: Let's explore what makes these changes valuable. Unified Field Model - Simplified Configuration We've repla...

Enhancing Plugin Metadata Management with SemanticPluginForge

In the world of software development, flexibility and adaptability are key. Developers often face challenges when it comes to updating plugin metadata dynamically without disrupting services or requiring redeployment. This is where SemanticPluginForge, an open-source project, steps in to improve the way we manage plugin metadata. LLM Function Calling Feature The function calling feature in LLMs allows developers to define a set of functions that the model can invoke during a conversation. These functions are described using metadata, which includes the function name, parameters, and their descriptions. The LL...

Smarter SK Agents with Contextual Function Selection

Smarter SK Agents with Contextual Function Selection In today's fast-paced AI landscape, developers are constantly seeking ways to make AI interactions more efficient and relevant. The new Contextual Function Selection feature in the Semantic Kernel Agent Framework is here to address this need. By dynamically selecting and advertising only the most relevant functions based on the current conversation context, this feature ensures that your AI agents are smarter, faster, and more effective than ever before. Why Contextual Function Selection Matters When dealing with a large number of available functions, AI mod...

Semantic Kernel and Microsoft.Extensions.AI: Better Together, Part 2

This is Part 2 of our series on integrating Microsoft.Extensions.AI with Semantic Kernel. In Part 1, we explored the relationship between these technologies and how they complement each other. Now, let's dive into practical examples showing how to use Microsoft.Extensions.AI abstractions with Semantic Kernel in non-agent scenarios. Getting Started with Microsoft.Extensions.AI and Semantic Kernel Before we dive into examples, let's understand what we'll be working with. Microsoft.Extensions.AI provides foundational abstractions like  and , while Semantic Kernel builds upon these to provide higher-level functio...

Semantic Kernel: Multi-agent Orchestration


The field of AI is rapidly evolving, and the need for more sophisticated, collaborative, and flexible agent-based systems is growing. With this in mind, Semantic Kernel introduces a new multi-agent orchestration framework that enables developers to build, manage, and scale complex agent workflows with ease. This post explores the new orchestration patterns, their capabilities, and how you can leverage them in your own projects. Why Multi-agent Orchestration? Traditional single-agent systems are limited in their ability to handle complex, multi-faceted tasks. By orchestrating multiple agents, each with special...

Semantic Kernel and Microsoft.Extensions.AI: Better Together, Part 1

This is the start of a series highlighting the integration between Microsoft Semantic Kernel and Microsoft.Extensions.AI. Future parts will provide detailed examples of using Semantic Kernel with Microsoft.Extensions.AI abstractions. The most common questions are: This blog post will address these questions and offer guidance on when and how to use them. First, we will explore what Microsoft Extensions AI is and its relationship with Semantic Kernel. The Evolution of AI Integration in .NET with Microsoft Extensions AI Artificial Intelligence, or AI, is evolving at a rapid pace that many d...