# -*- coding: utf-8 -*-
"""Untitled6.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1DXONijhgg7IdUpvpL5H2kmvoySZ0-gMX
"""

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.callbacks import EarlyStopping


# Conditional Contrastive GAN (CGAN) Network Architecture
def build_cgan(input_shape, num_classes):
    # Generator
    generator = build_generator(input_shape, num_classes)

    # Discriminator
    discriminator = build_discriminator(input_shape, num_classes)

    # CGAN Model
    cgan_input = layers.Input(shape=input_shape, name='cgan_input')
    generated_output = generator(cgan_input)
    cgan_output = discriminator([cgan_input, generated_output])

    cgan = models.Model(inputs=cgan_input, outputs=[generated_output, cgan_output])

    return cgan

    # Implement the generator architecture with skip connections
def build_generator(input_shape, num_classes):
    # Encoder
    input_layer = layers.Input(shape=input_shape, name='generator_input')
    x = layers.Conv2D(64, (3, 3), padding='same', activation='relu')(input_layer)
    skip_connections = [x]

    # Downsample
    for filters in [128, 256, 512]:
        x = layers.Conv2D(filters, (3, 3), strides=(2, 2), padding='same', activation='relu')(x)
        skip_connections.append(x)

    # Decoder
    for filters, skip_connection in zip([512, 256, 128, 64], reversed(skip_connections)):
        x = layers.Conv2DTranspose(filters, (3, 3), strides=(2, 2), padding='same', activation='relu')(x)
        x = layers.Concatenate()([x, skip_connection])

    output_layer = layers.Conv2D(num_classes, (1, 1), activation='softmax', name='generator_output')(x)

    generator = models.Model(inputs=input_layer, outputs=output_layer, name='generator')
    return generator

    # Implement the discriminator architecture
def build_discriminator(input_shape, num_classes):
    input_layer = layers.Input(shape=input_shape, name='discriminator_input')

    x = input_layer

    # Replace the following with your discriminator architecture
    x = layers.Conv2D(64, (3, 3), strides=(2, 2), padding='same', activation='relu')(x)
    x = layers.Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu')(x)
    x = layers.Conv2D(256, (3, 3), strides=(2, 2), padding='same', activation='relu')(x)

    # Global average pooling
    x = layers.GlobalAveragePooling2D()(x)

    # Fully connected layer for classification
    x = layers.Dense(num_classes, activation='softmax', name='discriminator_output')(x)

    discriminator = models.Model(inputs=input_layer, outputs=x, name='discriminator')
    return discriminator

# Class-specific Attention Module
def class_specific_attention(input_tensor, num_classes):
    # Depth-wise separable convolution
    x = layers.DepthwiseConv2D((3, 3), padding='same', activation=None)(input_tensor)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)

    # Global max pooling
    x = layers.GlobalMaxPooling2D()(x)

    # Fully connected layer for class scores
    class_scores = layers.Dense(num_classes, activation='softmax', name='class_scores')(x)

    # Reshape class scores to match the input shape
    class_scores = layers.Reshape((1, 1, num_classes))(class_scores)

    # Multiply input by class scores element-wise
    class_specific_attention = layers.Multiply(name='class_specific_attention')([input_tensor, class_scores])

    return class_specific_attention


# Region-level Rebalance Module
def region_level_rebalance(input_tensor, num_classes):
    # Auxiliary region classification module
    region_classification = layers.Conv2D(num_classes, (3, 3), padding='same', activation='softmax', name='region_classification')(input_tensor)

    # Extracted area (A) from the region classification
    extracted_area = layers.Activation('softmax', name='extracted_area')(region_classification)

    # Ground-truth of the region (A_y)
    ground_truth_region = layers.Input(shape=(None, None, num_classes), name='ground_truth_region')

    # Loss function for region rebalancing
    def region_rebalance_loss(y_true, y_pred):
        F_C = layers.Lambda(lambda x: layers.sum(layers.cast(layers.equal(x[0], x[1]), dtype='float32')))([ground_truth_region, extracted_area])
        A_y = layers.sum(y_true * extracted_area, axis=[1, 2])

        loss = -layers.log(A_y / layers.sum(F_C * layers.exp(y_pred), axis=[1, 2]))

        return loss

    # Pixel loss (Loss_pixel)
    pixel_loss = layers.Lambda(lambda x: -layers.log(x))(extracted_area)

    # Region loss (Loss_region)
    region_loss = layers.Lambda(region_rebalance_loss, name='region_loss')([ground_truth_region, region_classification])

    # Combined loss (Loss_all)
    combined_loss = layers.Add(name='loss_all')([pixel_loss, region_loss])

    return combined_loss

# Supervised Contrastive Learning-based Network (SCoLN)
def SCoLN(input_shape):
    # Input tensor
    input_tensor = layers.Input(shape=input_shape, name='input_tensor')

    # ResNet-50 architecture with a residual module
    resnet_base = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=input_shape)
    resnet_base.trainable = False

    # Contrastive learning part
    positive_output = layers.Dense(128, activation='relu', name='positive_output')(resnet_base(input_tensor))
    negative_output = layers.Dense(128, activation='relu', name='negative_output')(resnet_base(input_tensor))

    # Contrastive loss
    def contrastive_loss(y_true, y_pred):
        margin = 1
        positive_sim = tf.exp(tf.reduce_sum(y_true * y_pred[0], axis=-1))
        negative_sim = tf.reduce_sum(tf.exp(tf.reduce_sum(y_true * y_pred[1], axis=-1)))
        loss = -tf.math.log(positive_sim / (positive_sim + negative_sim + 1e-10))
        return loss

    # Contrastive loss layer
    contrastive_loss_layer = layers.Lambda(contrastive_loss, name='contrastive_loss')([positive_output, negative_output])

    # Classification part
    classification_output = layers.Dense(1, activation='sigmoid', name='classification_output')(resnet_base(input_tensor))

    # Classification loss
    classification_loss = 'binary_crossentropy'

    # Build the model
    SCoLN_model = models.Model(inputs=input_tensor, outputs=[contrastive_loss_layer, classification_output], name='SCoLN')
    SCoLN_model.compile(optimizer='adam', loss={'contrastive_loss': contrastive_loss, 'classification_output': classification_loss})

    return SCoLN_model

# Evaluation Measure Functions
def intersection_over_union(TP, FP, FN):
    return 2 * TP / (2 * TP + FP + FN)

def dice_similarity_coefficient(TP, FP, FN):
    return TP / (TP + FP + FN)

def precision(TP, FP):
    return TP / (TP + FP)

def recall(TP, FN):
    return TP / (TP + FN)

# Example usage
input_shape = (512, 512, 3)
num_classes = 3  # Adjust based on your task
cgan_model = build_cgan(input_shape, num_classes)

# Compile and train the model
SCoLN_model = SCoLN(input_shape)

SCoLN_model.compile(optimizer=tf.keras.optimizers.Adadelta(learning_rate=0.001, decay=1e-4),
                    loss={'contrastive_loss': contrastive_loss, 'classification_output': 'binary_crossentropy'},
                    metrics={'contrastive_loss': None, 'classification_output': 'accuracy'})

# Define early stopping callback
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)

# Train the model
history = SCoLN_model.fit(datagen.flow(train_data, {'contrastive_loss': train_labels, 'classification_output': train_labels},
                                       batch_size=32, shuffle=True),
                          epochs=450,
                          steps_per_epoch=len(train_data) // 32,
                          validation_data=(val_data, {'contrastive_loss': val_labels, 'classification_output': val_labels}),
                          callbacks=[early_stopping])

# Plot training history
#plt.plot(history.history['contrastive_loss'], label='Contrastive Loss')
#plt.plot(history.history['classification_output_accuracy'], label='Classification Accuracy')
#plt.plot(history.history['val_contrastive_loss'], label='Validation Contrastive Loss')
#plt.plot(history.history['val_classification_output_accuracy'], label='Validation Classification Accuracy')
#plt.xlabel('Epoch')
#plt.ylabel('Loss/Accuracy')
#plt.legend()
#plt.show()

# Evaluate segmentation performance
TP, FP, FN = 100, 10, 5  # Example values, replace with actual values
iou = intersection_over_union(TP, FP, FN)
dsc = dice_similarity_coefficient(TP, FP, FN)
prec = precision(TP, FP)
rec = recall(TP, FN)

# Print or use evaluation metrics as needed
print("IoU:", iou)
print("DSC:", dsc)
print("Precision:", prec)
print("Recall:", rec)