Ollama Docker安装

操作系统:Linux

首先你需要先安装好docker

安装

官方ollama教程

基本就是

# 拉取
docker pull ollama/ollama

#这个启动命令是对于linux操作系统,如果使用mac本地运行就要把--gpus参数去掉
# 启动
docker run -d --gpus=device=6 -v /mnt/nvme2/xuedongge/ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

如果是多张卡

docker run -d --gpus '"device=5,7"' -v /mnt/nvme2/xuedongge/ollama2:/root/.ollama -p 11435:11434 --name ollama2 ollama/ollama

-d,说的是终端关掉docker也不会停止,除非手动关闭
–gpus=device=6,说的是我让docker只能看到第七张卡
-v,把容器挂在到主机的这个路径下,(主机:容器)
-p,是把容器的端口号映射到主机的端口号(主机:容器)
–name,给我们启动的容器取一个名字嘛,
ollama/ollama,就是我们要启动的容器是基于那些镜像的。

使用

可以在容器外面直接运行指令。这里就是根据Ollama官方中ollama的所有指令前面加上 docker exec -it ollama这个实际上后面加一个bash就是进入到容器里面。如果不是进入到容器里面,只是在后面增加ollama的命令就是在容器外面执行ollama命令。

docker exec -it ollama ollama pull llama3.1

列几个常用的命令好了,ollama支持模型

拉取

#拉取模型
ollama pull llama3.1

创建

创建Modelfile文件:根据现有模型增加一些参数以及template。

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
#创建好了Modelfile以后执行一下命令
ollama gpt5 mario -f ./Modelfile

列表

# 模型列表,类似于docker images,镜像都有哪些
ollama list/ls

# 正在运行的模型有哪些,类似于docker ps
ollama ps

停止

ollama stop llama3.1

移除

ollama rm llama3.1

部署

ollama run llama3.1

WebUI

直接上一个开源的docker,参考

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

在这里插入图片描述

### 使用 Ollama Docker 镜像或容器 #### 下载并安装 Docker 为了能够在 Linux 上使用 OllamaDocker 镜像,首先需要确保已经正确安装Docker。可以通过官方文档获取详细的安装指南[^1]。 #### 添加阿里云的 Docker CE 源 为了加速 Docker 的下载速度,可以配置国内的镜像源来提高效率: ```bash yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo ``` 这一步骤能够显著提升后续软件包下载的速度和稳定性[^2]。 #### 获取 Ollama Docker 镜像 完成上述准备工作之后,就可以拉取最新的 Ollama Docker 镜像到本地环境中: ```bash docker pull ollama/ollama ``` 此命令会从远程仓库中下载指定名称的最新版本镜像文件至本机存储系统内待用[^4]。 #### 启动带有 GPU 支持的 Ollama 容器 当准备就绪后,通过下面这条指令启动一个新的容器实例,并赋予其访问主机上的特定目录权限以及端口映射功能;同时开启对 NVIDIA GPU 设备的支持(仅限于支持 CUDA 技术的硬件平台): ```bash sudo nvidia-ctk runtime configure --runtime=docker sudo systemctl restart docker docker run -d --gpus=all \ -v /path/to/local/dir:/root/.ollama \ -p 11434:11434 \ --name ollama \ ollama/ollama ``` 这里 `-v` 参数用于定义卷挂载路径,而 `-p` 则指定了外部可访问的服务端口号。注意替换 `/path/to/local/dir` 为实际想要共享给容器使用的宿主机绝对路径[^3]。 #### 访问服务 一旦容器成功启动,在浏览器地址栏输入 `http://localhost:11434` 即可连接到由该容器所提供的 Web 应用界面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛右刀薛面

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值