智能优化算法——遗传算法(Genetic Algorithm, GA)

智能优化算法——遗传算法(Genetic Algorithm, GA)

遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化算法,由John Holland在20世纪70年代提出。它模拟生物进化过程,通过选择、交叉和变异等操作,在搜索空间中找到最优解。本文将详细介绍GA算法的原理,并提供Python代码示例和可视化结果。

算法原理

遗传算法的基本思想是通过模拟生物进化过程中的自然选择和遗传机制,在复杂的搜索空间中找到最优解。算法的基本步骤包括:

  1. 初始化种群:随机生成一定数量的个体(解)的初始种群。
  2. 评估适应度:计算每个个体的适应度(即目标函数值)。
  3. 选择:根据适应度选择一些个体作为父代,适应度高的个体被选择的概率较大。
  4. 交叉:通过交换两个父代个体的部分基因,生成新的个体(子代)。
  5. 变异:随机改变一些子代个体的基因,以增加种群的多样性。
  6. 更新种群:用子代个体替换父代个体,形成新的种群。
  7. 迭代:重复评估、选择、交叉和变异的过程,直到达到停止条件(如达到最大迭代次数或适应度满足某个阈值)。

算法公式

在GA算法中,最常用的操作包括选择、交叉和变异:

  1. 选择操作

    • 轮盘赌选择(Roulette Wheel Selection):每个个体被选择的概率与其适应度成正比。
    • 锦标赛选择(Tournament Selection):从种群中随机选择几个个体,选择其中适应度最高的个体。
  2. 交叉操作

    • 单点交叉(Single-point Crossover):在两个父代个体的基因序列中随机选择一个交叉点,交换交叉点后的基因。
    • 多点交叉(Multi-point Crossover):在多个交叉点进行基因交换。
  3. 变异操作

    • 基因突变(Mutation):随机改变个体基因序列中的某些基因值。

算法代码

以下是一个简单的GA算法的Python实现示例:
将GA算法的实现改为类的方式,并在每次迭代中保存图像帧,最终生成GIF图像,以下是修改后的代码示例:

import numpy as np
import matplotlib.pyplot as plt
import imageio

class GeneticAlgorithm:
    def __init__(self, objective_function, num_individuals, num_dimensions, num_iterations, mutation_rate=0.01, crossover_rate=0.7):
        self.objective_function = objective_function
        self.num_individuals = num_individuals
        self.num_dimensions = num_dimensions
        self.num_iterations = num_iterations
        self.mutation_rate = mutation_rate
        self.crossover_rate = crossover_rate
        self.population = np.random.uniform(-10, 10, (num_individuals, num_dimensions))
        self.frames = []

    def select_parents(self, population, fitness):
        selected = np.random.choice(np.arange(self.num_individuals), size=self.num_individuals,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值