core/iter/traits/
collect.rs

1use super::TrustedLen;
2
3/// Conversion from an [`Iterator`].
4///
5/// By implementing `FromIterator` for a type, you define how it will be
6/// created from an iterator. This is common for types which describe a
7/// collection of some kind.
8///
9/// If you want to create a collection from the contents of an iterator, the
10/// [`Iterator::collect()`] method is preferred. However, when you need to
11/// specify the container type, [`FromIterator::from_iter()`] can be more
12/// readable than using a turbofish (e.g. `::<Vec<_>>()`). See the
13/// [`Iterator::collect()`] documentation for more examples of its use.
14///
15/// See also: [`IntoIterator`].
16///
17/// # Examples
18///
19/// Basic usage:
20///
21/// ```
22/// let five_fives = std::iter::repeat(5).take(5);
23///
24/// let v = Vec::from_iter(five_fives);
25///
26/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
27/// ```
28///
29/// Using [`Iterator::collect()`] to implicitly use `FromIterator`:
30///
31/// ```
32/// let five_fives = std::iter::repeat(5).take(5);
33///
34/// let v: Vec<i32> = five_fives.collect();
35///
36/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
37/// ```
38///
39/// Using [`FromIterator::from_iter()`] as a more readable alternative to
40/// [`Iterator::collect()`]:
41///
42/// ```
43/// use std::collections::VecDeque;
44/// let first = (0..10).collect::<VecDeque<i32>>();
45/// let second = VecDeque::from_iter(0..10);
46///
47/// assert_eq!(first, second);
48/// ```
49///
50/// Implementing `FromIterator` for your type:
51///
52/// ```
53/// // A sample collection, that's just a wrapper over Vec<T>
54/// #[derive(Debug)]
55/// struct MyCollection(Vec<i32>);
56///
57/// // Let's give it some methods so we can create one and add things
58/// // to it.
59/// impl MyCollection {
60///     fn new() -> MyCollection {
61///         MyCollection(Vec::new())
62///     }
63///
64///     fn add(&mut self, elem: i32) {
65///         self.0.push(elem);
66///     }
67/// }
68///
69/// // and we'll implement FromIterator
70/// impl FromIterator<i32> for MyCollection {
71///     fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
72///         let mut c = MyCollection::new();
73///
74///         for i in iter {
75///             c.add(i);
76///         }
77///
78///         c
79///     }
80/// }
81///
82/// // Now we can make a new iterator...
83/// let iter = (0..5).into_iter();
84///
85/// // ... and make a MyCollection out of it
86/// let c = MyCollection::from_iter(iter);
87///
88/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
89///
90/// // collect works too!
91///
92/// let iter = (0..5).into_iter();
93/// let c: MyCollection = iter.collect();
94///
95/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
96/// ```
97#[stable(feature = "rust1", since = "1.0.0")]
98#[rustc_on_unimplemented(
99    on(
100        Self = "&[{A}]",
101        message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
102        label = "try explicitly collecting into a `Vec<{A}>`",
103    ),
104    on(
105        all(A = "{integer}", any(Self = "&[{integral}]",)),
106        message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
107        label = "try explicitly collecting into a `Vec<{A}>`",
108    ),
109    on(
110        Self = "[{A}]",
111        message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
112        label = "try explicitly collecting into a `Vec<{A}>`",
113    ),
114    on(
115        all(A = "{integer}", any(Self = "[{integral}]",)),
116        message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
117        label = "try explicitly collecting into a `Vec<{A}>`",
118    ),
119    on(
120        Self = "[{A}; _]",
121        message = "an array of type `{Self}` cannot be built directly from an iterator",
122        label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
123    ),
124    on(
125        all(A = "{integer}", any(Self = "[{integral}; _]",)),
126        message = "an array of type `{Self}` cannot be built directly from an iterator",
127        label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
128    ),
129    message = "a value of type `{Self}` cannot be built from an iterator \
130               over elements of type `{A}`",
131    label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`"
132)]
133#[rustc_diagnostic_item = "FromIterator"]
134pub trait FromIterator<A>: Sized {
135    /// Creates a value from an iterator.
136    ///
137    /// See the [module-level documentation] for more.
138    ///
139    /// [module-level documentation]: crate::iter
140    ///
141    /// # Examples
142    ///
143    /// ```
144    /// let five_fives = std::iter::repeat(5).take(5);
145    ///
146    /// let v = Vec::from_iter(five_fives);
147    ///
148    /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
149    /// ```
150    #[stable(feature = "rust1", since = "1.0.0")]
151    #[rustc_diagnostic_item = "from_iter_fn"]
152    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self;
153}
154
155/// Conversion into an [`Iterator`].
156///
157/// By implementing `IntoIterator` for a type, you define how it will be
158/// converted to an iterator. This is common for types which describe a
159/// collection of some kind.
160///
161/// One benefit of implementing `IntoIterator` is that your type will [work
162/// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator).
163///
164/// See also: [`FromIterator`].
165///
166/// # Examples
167///
168/// Basic usage:
169///
170/// ```
171/// let v = [1, 2, 3];
172/// let mut iter = v.into_iter();
173///
174/// assert_eq!(Some(1), iter.next());
175/// assert_eq!(Some(2), iter.next());
176/// assert_eq!(Some(3), iter.next());
177/// assert_eq!(None, iter.next());
178/// ```
179/// Implementing `IntoIterator` for your type:
180///
181/// ```
182/// // A sample collection, that's just a wrapper over Vec<T>
183/// #[derive(Debug)]
184/// struct MyCollection(Vec<i32>);
185///
186/// // Let's give it some methods so we can create one and add things
187/// // to it.
188/// impl MyCollection {
189///     fn new() -> MyCollection {
190///         MyCollection(Vec::new())
191///     }
192///
193///     fn add(&mut self, elem: i32) {
194///         self.0.push(elem);
195///     }
196/// }
197///
198/// // and we'll implement IntoIterator
199/// impl IntoIterator for MyCollection {
200///     type Item = i32;
201///     type IntoIter = std::vec::IntoIter<Self::Item>;
202///
203///     fn into_iter(self) -> Self::IntoIter {
204///         self.0.into_iter()
205///     }
206/// }
207///
208/// // Now we can make a new collection...
209/// let mut c = MyCollection::new();
210///
211/// // ... add some stuff to it ...
212/// c.add(0);
213/// c.add(1);
214/// c.add(2);
215///
216/// // ... and then turn it into an Iterator:
217/// for (i, n) in c.into_iter().enumerate() {
218///     assert_eq!(i as i32, n);
219/// }
220/// ```
221///
222/// It is common to use `IntoIterator` as a trait bound. This allows
223/// the input collection type to change, so long as it is still an
224/// iterator. Additional bounds can be specified by restricting on
225/// `Item`:
226///
227/// ```rust
228/// fn collect_as_strings<T>(collection: T) -> Vec<String>
229/// where
230///     T: IntoIterator,
231///     T::Item: std::fmt::Debug,
232/// {
233///     collection
234///         .into_iter()
235///         .map(|item| format!("{item:?}"))
236///         .collect()
237/// }
238/// ```
239#[rustc_diagnostic_item = "IntoIterator"]
240#[rustc_on_unimplemented(
241    on(
242        Self = "core::ops::range::RangeTo<Idx>",
243        label = "if you meant to iterate until a value, add a starting value",
244        note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
245              bounded `Range`: `0..end`"
246    ),
247    on(
248        Self = "core::ops::range::RangeToInclusive<Idx>",
249        label = "if you meant to iterate until a value (including it), add a starting value",
250        note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
251              to have a bounded `RangeInclusive`: `0..=end`"
252    ),
253    on(
254        Self = "[]",
255        label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
256    ),
257    on(Self = "&[]", label = "`{Self}` is not an iterator; try calling `.iter()`"),
258    on(
259        Self = "alloc::vec::Vec<T, A>",
260        label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
261    ),
262    on(Self = "&str", label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"),
263    on(
264        Self = "alloc::string::String",
265        label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
266    ),
267    on(
268        Self = "{integral}",
269        note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
270              syntax `start..end` or the inclusive range syntax `start..=end`"
271    ),
272    on(
273        Self = "{float}",
274        note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
275              syntax `start..end` or the inclusive range syntax `start..=end`"
276    ),
277    label = "`{Self}` is not an iterator",
278    message = "`{Self}` is not an iterator"
279)]
280#[rustc_skip_during_method_dispatch(array, boxed_slice)]
281#[stable(feature = "rust1", since = "1.0.0")]
282pub trait IntoIterator {
283    /// The type of the elements being iterated over.
284    #[stable(feature = "rust1", since = "1.0.0")]
285    type Item;
286
287    /// Which kind of iterator are we turning this into?
288    #[stable(feature = "rust1", since = "1.0.0")]
289    type IntoIter: Iterator<Item = Self::Item>;
290
291    /// Creates an iterator from a value.
292    ///
293    /// See the [module-level documentation] for more.
294    ///
295    /// [module-level documentation]: crate::iter
296    ///
297    /// # Examples
298    ///
299    /// ```
300    /// let v = [1, 2, 3];
301    /// let mut iter = v.into_iter();
302    ///
303    /// assert_eq!(Some(1), iter.next());
304    /// assert_eq!(Some(2), iter.next());
305    /// assert_eq!(Some(3), iter.next());
306    /// assert_eq!(None, iter.next());
307    /// ```
308    #[lang = "into_iter"]
309    #[stable(feature = "rust1", since = "1.0.0")]
310    fn into_iter(self) -> Self::IntoIter;
311}
312
313#[stable(feature = "rust1", since = "1.0.0")]
314impl<I: Iterator> IntoIterator for I {
315    type Item = I::Item;
316    type IntoIter = I;
317
318    #[inline]
319    fn into_iter(self) -> I {
320        self
321    }
322}
323
324/// Extend a collection with the contents of an iterator.
325///
326/// Iterators produce a series of values, and collections can also be thought
327/// of as a series of values. The `Extend` trait bridges this gap, allowing you
328/// to extend a collection by including the contents of that iterator. When
329/// extending a collection with an already existing key, that entry is updated
330/// or, in the case of collections that permit multiple entries with equal
331/// keys, that entry is inserted.
332///
333/// # Examples
334///
335/// Basic usage:
336///
337/// ```
338/// // You can extend a String with some chars:
339/// let mut message = String::from("The first three letters are: ");
340///
341/// message.extend(&['a', 'b', 'c']);
342///
343/// assert_eq!("abc", &message[29..32]);
344/// ```
345///
346/// Implementing `Extend`:
347///
348/// ```
349/// // A sample collection, that's just a wrapper over Vec<T>
350/// #[derive(Debug)]
351/// struct MyCollection(Vec<i32>);
352///
353/// // Let's give it some methods so we can create one and add things
354/// // to it.
355/// impl MyCollection {
356///     fn new() -> MyCollection {
357///         MyCollection(Vec::new())
358///     }
359///
360///     fn add(&mut self, elem: i32) {
361///         self.0.push(elem);
362///     }
363/// }
364///
365/// // since MyCollection has a list of i32s, we implement Extend for i32
366/// impl Extend<i32> for MyCollection {
367///
368///     // This is a bit simpler with the concrete type signature: we can call
369///     // extend on anything which can be turned into an Iterator which gives
370///     // us i32s. Because we need i32s to put into MyCollection.
371///     fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
372///
373///         // The implementation is very straightforward: loop through the
374///         // iterator, and add() each element to ourselves.
375///         for elem in iter {
376///             self.add(elem);
377///         }
378///     }
379/// }
380///
381/// let mut c = MyCollection::new();
382///
383/// c.add(5);
384/// c.add(6);
385/// c.add(7);
386///
387/// // let's extend our collection with three more numbers
388/// c.extend(vec![1, 2, 3]);
389///
390/// // we've added these elements onto the end
391/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{c:?}"));
392/// ```
393#[stable(feature = "rust1", since = "1.0.0")]
394pub trait Extend<A> {
395    /// Extends a collection with the contents of an iterator.
396    ///
397    /// As this is the only required method for this trait, the [trait-level] docs
398    /// contain more details.
399    ///
400    /// [trait-level]: Extend
401    ///
402    /// # Examples
403    ///
404    /// ```
405    /// // You can extend a String with some chars:
406    /// let mut message = String::from("abc");
407    ///
408    /// message.extend(['d', 'e', 'f'].iter());
409    ///
410    /// assert_eq!("abcdef", &message);
411    /// ```
412    #[stable(feature = "rust1", since = "1.0.0")]
413    fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T);
414
415    /// Extends a collection with exactly one element.
416    #[unstable(feature = "extend_one", issue = "72631")]
417    fn extend_one(&mut self, item: A) {
418        self.extend(Some(item));
419    }
420
421    /// Reserves capacity in a collection for the given number of additional elements.
422    ///
423    /// The default implementation does nothing.
424    #[unstable(feature = "extend_one", issue = "72631")]
425    fn extend_reserve(&mut self, additional: usize) {
426        let _ = additional;
427    }
428
429    /// Extends a collection with one element, without checking there is enough capacity for it.
430    ///
431    /// # Safety
432    ///
433    /// **For callers:** This must only be called when we know the collection has enough capacity
434    /// to contain the new item, for example because we previously called `extend_reserve`.
435    ///
436    /// **For implementors:** For a collection to unsafely rely on this method's safety precondition (that is,
437    /// invoke UB if they are violated), it must implement `extend_reserve` correctly. In other words,
438    /// callers may assume that if they `extend_reserve`ed enough space they can call this method.
439
440    // This method is for internal usage only. It is only on the trait because of specialization's limitations.
441    #[unstable(feature = "extend_one_unchecked", issue = "none")]
442    #[doc(hidden)]
443    unsafe fn extend_one_unchecked(&mut self, item: A)
444    where
445        Self: Sized,
446    {
447        self.extend_one(item);
448    }
449}
450
451#[stable(feature = "extend_for_unit", since = "1.28.0")]
452impl Extend<()> for () {
453    fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
454        iter.into_iter().for_each(drop)
455    }
456    fn extend_one(&mut self, _item: ()) {}
457}
458
459macro_rules! spec_tuple_impl {
460    (
461        (
462            $ty_name:ident, $var_name:ident, $extend_ty_name: ident,
463            $trait_name:ident, $default_fn_name:ident, $cnt:tt
464        ),
465    ) => {
466        spec_tuple_impl!(
467            $trait_name,
468            $default_fn_name,
469            #[doc(fake_variadic)]
470            #[doc = "This trait is implemented for tuples up to twelve items long. The `impl`s for \
471                     1- and 3- through 12-ary tuples were stabilized after 2-tuples, in \
472                     1.85.0."]
473            => ($ty_name, $var_name, $extend_ty_name, $cnt),
474        );
475    };
476    (
477        (
478            $ty_name:ident, $var_name:ident, $extend_ty_name: ident,
479            $trait_name:ident, $default_fn_name:ident, $cnt:tt
480        ),
481        $(
482            (
483                $ty_names:ident, $var_names:ident,  $extend_ty_names:ident,
484                $trait_names:ident, $default_fn_names:ident, $cnts:tt
485            ),
486        )*
487    ) => {
488        spec_tuple_impl!(
489            $(
490                (
491                    $ty_names, $var_names, $extend_ty_names,
492                    $trait_names, $default_fn_names, $cnts
493                ),
494            )*
495        );
496        spec_tuple_impl!(
497            $trait_name,
498            $default_fn_name,
499            #[doc(hidden)]
500            => (
501                $ty_name, $var_name, $extend_ty_name, $cnt
502            ),
503            $(
504                (
505                    $ty_names, $var_names, $extend_ty_names, $cnts
506                ),
507            )*
508        );
509    };
510    (
511        $trait_name:ident, $default_fn_name:ident, #[$meta:meta]
512        $(#[$doctext:meta])? => $(
513            (
514                $ty_names:ident, $var_names:ident, $extend_ty_names:ident, $cnts:tt
515            ),
516        )*
517    ) => {
518        #[$meta]
519        $(#[$doctext])?
520        #[stable(feature = "extend_for_tuple", since = "1.56.0")]
521        impl<$($ty_names,)* $($extend_ty_names,)*> Extend<($($ty_names,)*)> for ($($extend_ty_names,)*)
522        where
523            $($extend_ty_names: Extend<$ty_names>,)*
524        {
525            /// Allows to `extend` a tuple of collections that also implement `Extend`.
526            ///
527            /// See also: [`Iterator::unzip`]
528            ///
529            /// # Examples
530            /// ```
531            /// // Example given for a 2-tuple, but 1- through 12-tuples are supported
532            /// let mut tuple = (vec![0], vec![1]);
533            /// tuple.extend([(2, 3), (4, 5), (6, 7)]);
534            /// assert_eq!(tuple.0, [0, 2, 4, 6]);
535            /// assert_eq!(tuple.1, [1, 3, 5, 7]);
536            ///
537            /// // also allows for arbitrarily nested tuples as elements
538            /// let mut nested_tuple = (vec![1], (vec![2], vec![3]));
539            /// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]);
540            ///
541            /// let (a, (b, c)) = nested_tuple;
542            /// assert_eq!(a, [1, 4, 7]);
543            /// assert_eq!(b, [2, 5, 8]);
544            /// assert_eq!(c, [3, 6, 9]);
545            /// ```
546            fn extend<T: IntoIterator<Item = ($($ty_names,)*)>>(&mut self, into_iter: T) {
547                let ($($var_names,)*) = self;
548                let iter = into_iter.into_iter();
549                $trait_name::extend(iter, $($var_names,)*);
550            }
551
552            fn extend_one(&mut self, item: ($($ty_names,)*)) {
553                $(self.$cnts.extend_one(item.$cnts);)*
554            }
555
556            fn extend_reserve(&mut self, additional: usize) {
557                $(self.$cnts.extend_reserve(additional);)*
558            }
559
560            unsafe fn extend_one_unchecked(&mut self, item: ($($ty_names,)*)) {
561                // SAFETY: Those are our safety preconditions, and we correctly forward `extend_reserve`.
562                unsafe {
563                     $(self.$cnts.extend_one_unchecked(item.$cnts);)*
564                }
565            }
566        }
567
568        trait $trait_name<$($ty_names),*> {
569            fn extend(self, $($var_names: &mut $ty_names,)*);
570        }
571
572        fn $default_fn_name<$($ty_names,)* $($extend_ty_names,)*>(
573            iter: impl Iterator<Item = ($($ty_names,)*)>,
574            $($var_names: &mut $extend_ty_names,)*
575        ) where
576            $($extend_ty_names: Extend<$ty_names>,)*
577        {
578            fn extend<'a, $($ty_names,)*>(
579                $($var_names: &'a mut impl Extend<$ty_names>,)*
580            ) -> impl FnMut((), ($($ty_names,)*)) + 'a {
581                #[allow(non_snake_case)]
582                move |(), ($($extend_ty_names,)*)| {
583                    $($var_names.extend_one($extend_ty_names);)*
584                }
585            }
586
587            let (lower_bound, _) = iter.size_hint();
588            if lower_bound > 0 {
589                $($var_names.extend_reserve(lower_bound);)*
590            }
591
592            iter.fold((), extend($($var_names,)*));
593        }
594
595        impl<$($ty_names,)* $($extend_ty_names,)* Iter> $trait_name<$($extend_ty_names),*> for Iter
596        where
597            $($extend_ty_names: Extend<$ty_names>,)*
598            Iter: Iterator<Item = ($($ty_names,)*)>,
599        {
600            default fn extend(self, $($var_names: &mut $extend_ty_names),*) {
601                $default_fn_name(self, $($var_names),*);
602            }
603        }
604
605        impl<$($ty_names,)* $($extend_ty_names,)* Iter> $trait_name<$($extend_ty_names),*> for Iter
606        where
607            $($extend_ty_names: Extend<$ty_names>,)*
608            Iter: TrustedLen<Item = ($($ty_names,)*)>,
609        {
610            fn extend(self, $($var_names: &mut $extend_ty_names,)*) {
611                fn extend<'a, $($ty_names,)*>(
612                    $($var_names: &'a mut impl Extend<$ty_names>,)*
613                ) -> impl FnMut((), ($($ty_names,)*)) + 'a {
614                    #[allow(non_snake_case)]
615                    // SAFETY: We reserve enough space for the `size_hint`, and the iterator is
616                    // `TrustedLen` so its `size_hint` is exact.
617                    move |(), ($($extend_ty_names,)*)| unsafe {
618                        $($var_names.extend_one_unchecked($extend_ty_names);)*
619                    }
620                }
621
622                let (lower_bound, upper_bound) = self.size_hint();
623
624                if upper_bound.is_none() {
625                    // We cannot reserve more than `usize::MAX` items, and this is likely to go out of memory anyway.
626                    $default_fn_name(self, $($var_names,)*);
627                    return;
628                }
629
630                if lower_bound > 0 {
631                    $($var_names.extend_reserve(lower_bound);)*
632                }
633
634                self.fold((), extend($($var_names,)*));
635            }
636        }
637
638        /// This implementation turns an iterator of tuples into a tuple of types which implement
639        /// [`Default`] and [`Extend`].
640        ///
641        /// This is similar to [`Iterator::unzip`], but is also composable with other [`FromIterator`]
642        /// implementations:
643        ///
644        /// ```rust
645        /// # fn main() -> Result<(), core::num::ParseIntError> {
646        /// let string = "1,2,123,4";
647        ///
648        /// // Example given for a 2-tuple, but 1- through 12-tuples are supported
649        /// let (numbers, lengths): (Vec<_>, Vec<_>) = string
650        ///     .split(',')
651        ///     .map(|s| s.parse().map(|n: u32| (n, s.len())))
652        ///     .collect::<Result<_, _>>()?;
653        ///
654        /// assert_eq!(numbers, [1, 2, 123, 4]);
655        /// assert_eq!(lengths, [1, 1, 3, 1]);
656        /// # Ok(()) }
657        /// ```
658        #[$meta]
659        $(#[$doctext])?
660        #[stable(feature = "from_iterator_for_tuple", since = "1.79.0")]
661        impl<$($ty_names,)* $($extend_ty_names,)*> FromIterator<($($extend_ty_names,)*)> for ($($ty_names,)*)
662        where
663            $($ty_names: Default + Extend<$extend_ty_names>,)*
664        {
665            fn from_iter<Iter: IntoIterator<Item = ($($extend_ty_names,)*)>>(iter: Iter) -> Self {
666                let mut res = <($($ty_names,)*)>::default();
667                res.extend(iter);
668
669                res
670            }
671        }
672
673    };
674}
675
676spec_tuple_impl!(
677    (L, l, EL, TraitL, default_extend_tuple_l, 11),
678    (K, k, EK, TraitK, default_extend_tuple_k, 10),
679    (J, j, EJ, TraitJ, default_extend_tuple_j, 9),
680    (I, i, EI, TraitI, default_extend_tuple_i, 8),
681    (H, h, EH, TraitH, default_extend_tuple_h, 7),
682    (G, g, EG, TraitG, default_extend_tuple_g, 6),
683    (F, f, EF, TraitF, default_extend_tuple_f, 5),
684    (E, e, EE, TraitE, default_extend_tuple_e, 4),
685    (D, d, ED, TraitD, default_extend_tuple_d, 3),
686    (C, c, EC, TraitC, default_extend_tuple_c, 2),
687    (B, b, EB, TraitB, default_extend_tuple_b, 1),
688    (A, a, EA, TraitA, default_extend_tuple_a, 0),
689);