

[1] Oracle® Fusion Middleware
Tuning Performance of Oracle WebLogic Server

12c (12.2.1)

E55161-02

February 2016

This document is for people who monitor performance and
tune the components in a WebLogic Server environment.

Oracle Fusion Middleware Tuning Performance of Oracle WebLogic Server, 12c (12.2.1)

E55161-02

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Documentation Accessibility ... xi
Conventions ... xi

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.3 Performance Features of this Release... 1-2

2 Top Tuning Recommendations for WebLogic Server

2.1 Tune Pool Sizes.. 2-1
2.2 Use the Prepared Statement Cache .. 2-1
2.3 Use Logging Last Resource Optimization... 2-2
2.4 Tune Connection Backlog Buffering .. 2-2
2.5 Use Optimistic or Read-only Concurrency ... 2-2
2.6 Use Local Interfaces .. 2-2
2.7 Use eager-relationship-caching .. 2-2
2.8 Tune HTTP Sessions... 2-2
2.9 Tune Messaging Applications... 2-3

3 Performance Tuning Roadmap

3.1 Performance Tuning Roadmap... 3-1
3.1.1 Understand Your Performance Objectives .. 3-1
3.1.2 Measure Your Performance Metrics ... 3-2
3.1.3 Monitor Disk and CPU Utilization.. 3-2
3.1.4 Monitor Data Transfers Across the Network .. 3-3
3.1.5 Locate Bottlenecks in Your System ... 3-3
3.1.6 Minimize Impact of Bottlenecks .. 3-3
3.1.7 Tune Your Application ... 3-3
3.1.8 Tune your DB ... 3-4
3.1.9 Tune WebLogic Server Performance Parameters ... 3-4
3.1.10 Tune Your JVM .. 3-4
3.1.11 Tune the Operating System.. 3-4
3.1.12 Achieve Performance Objectives... 3-4
3.2 Tuning Tips.. 3-4

iv

4 Tuning Java Virtual Machines (JVMs)

4.1 JVM Tuning Considerations.. 4-1
4.2 Changing To a Different JVM ... 4-2
4.3 Garbage Collection ... 4-2
4.3.1 VM Heap Size and Garbage Collection .. 4-2
4.3.2 Choosing a Garbage Collection Scheme... 4-3
4.3.3 Using Verbose Garbage Collection to Determine Heap Size .. 4-3
4.3.4 Specifying Heap Size Values.. 4-4
4.3.5 Tuning Tips for Heap Sizes .. 4-4
4.3.6 Java HotSpot VM Heap Size Options ... 4-5
4.3.6.1 Other Java HotSpot VM Options ... 4-5
4.3.7 Automatically Logging Low Memory Conditions ... 4-6
4.3.8 Manually Requesting Garbage Collection ... 4-6
4.3.9 Requesting Thread Stacks... 4-6
4.4 Increasing Java Heap Size for Managed Servers.. 4-6
4.4.1 Using the Administration Console to Set Java Heap Size ... 4-7
4.4.2 Modify the startManagedWebLogic Script to Set Java Heap Size................................ 4-7
4.4.3 Using the Command Line to Set Java Heap Size .. 4-7
4.4.4 Determining the Memory Values Used by a Managed Server 4-7

5 Tuning WebLogic Diagnostic Framework and Java Flight Recorder
Integration

5.1 Using Java Flight Recorder.. 5-1
5.2 Using WLDF .. 5-1
5.3 Tuning Considerations... 5-1

6 Tuning WebLogic Server

6.1 Setting Java Parameters for Starting WebLogic Server ... 6-1
6.2 Development vs. Production Mode Default Tuning Values .. 6-2
6.3 Deployment ... 6-3
6.3.1 On-demand Deployment of Internal Applications... 6-3
6.3.2 Use FastSwap Deployment to Minimize Redeployment Time..................................... 6-3
6.3.3 Generic Overrides.. 6-4
6.4 Thread Management ... 6-4
6.4.1 Tuning a Work Manager... 6-4
6.4.2 How Many Work Managers are Needed? ... 6-4
6.4.3 What are the SLA Requirements for Each Work Manager? .. 6-4
6.4.4 Understanding the Differences Between Work Managers and Execute Queues 6-4
6.4.5 Migrating from Previous Releases .. 6-5
6.4.6 Tuning the Stuck Thread Detection Behavior ... 6-5
6.5 Tuning Network I/O.. 6-6
6.5.1 Tuning Muxers... 6-6
6.5.1.1 Non-Blocking IO Muxer .. 6-6
6.5.1.2 Other Muxers .. 6-6
6.5.1.2.1 Native Muxers ... 6-7
6.5.1.2.2 Java Muxer.. 6-7

v

6.5.2 Network Channels... 6-7
6.5.3 Reducing the Potential for Denial of Service Attacks... 6-8
6.5.3.1 Tuning Message Size.. 6-8
6.5.3.2 Tuning Complete Message Timeout.. 6-8
6.5.3.3 Tuning Number of File Descriptors... 6-8
6.5.4 Tuning Connection Backlog Buffering ... 6-9
6.5.5 Tuning Cached Connections .. 6-9
6.6 Multitenancy Tuning Recommendations.. 6-9
6.7 Optimize Java Expressions ... 6-10
6.8 Using WebLogic Server Clusters to Improve Performance... 6-10
6.8.1 Scalability and High Availability ... 6-11
6.8.2 How to Ensure Scalability for WebLogic Clusters... 6-11
6.8.2.1 Database Bottlenecks... 6-12
6.8.2.2 Session Replication.. 6-12
6.8.2.3 Asynchronous HTTP Session Replication ... 6-12
6.8.2.3.1 Asynchronous HTTP Session Replication using a Secondary Server 6-12
6.8.2.3.2 Asynchronous HTTP Session Replication using a Database 6-13
6.8.2.4 Invalidation of Entity EJBs ... 6-13
6.8.2.5 Invalidation of HTTP sessions... 6-14
6.8.2.6 JNDI Binding, Unbinding and Rebinding ... 6-14
6.8.3 Running Multiple Server Instances on Multi-Core Machines.................................... 6-14
6.8.4 Improving Cluster Throughput using XA Transaction Cluster Affinity 6-14
6.9 Monitoring a WebLogic Server Domain... 6-14
6.9.1 Using the Administration Console to Monitor WebLogic Server 6-15
6.9.2 Using the WebLogic Diagnostic Framework.. 6-15
6.9.3 Using JMX to Monitor WebLogic Server... 6-15
6.9.4 Using WLST to Monitor WebLogic Server ... 6-15
6.9.5 Resources to Monitor WebLogic Server .. 6-15
6.10 Tuning Class and Resource Loading .. 6-15
6.10.1 Filtering Loader Mechanism ... 6-16
6.10.2 Class Caching .. 6-16
6.11 SSL Considerations ... 6-17

7 Tuning the WebLogic Persistent Store

7.1 Overview of Persistent Stores ... 7-1
7.1.1 Using the Default Persistent Store... 7-1
7.1.2 Using Custom File Stores and JDBC Stores ... 7-2
7.1.3 Using a JDBC TLOG Store.. 7-2
7.1.4 Using JMS Paging Stores .. 7-2
7.1.4.1 Using Flash Storage to Page JMS Messages.. 7-3
7.1.5 Using Diagnostic Stores .. 7-3
7.2 Best Practices When Using Persistent Stores .. 7-3
7.3 Tuning JDBC Stores .. 7-4
7.4 Tuning File Stores ... 7-4
7.4.1 Basic Tuning Information ... 7-4
7.4.2 Tuning a File Store Direct-Write-With-Cache Policy ... 7-5
7.4.2.1 Using Flash Storage to Increase Performance .. 7-6

vi

7.4.2.2 Additional Considerations .. 7-6
7.4.3 Tuning the File Store Direct-Write Policy .. 7-7
7.4.4 Tuning the File Store Block Size .. 7-7
7.4.4.1 Setting the Block Size for a File Store... 7-8
7.4.4.2 Determining the File Store Block Size ... 7-9
7.4.4.3 Determining the File System Block Size.. 7-9
7.4.4.4 Converting a Store with Pre-existing Files ... 7-9
7.5 Using a Network File System.. 7-9
7.5.1 Configuring Synchronous Write Policies ... 7-9
7.5.2 Test Server Restart Behavior ... 7-10
7.5.3 Handling NFS Locking Errors .. 7-10
7.5.3.1 Solution 1 - Copying Data Files to Remove NFS Locks 7-11
7.5.3.2 Solution 2 - Disabling File Locks in WebLogic Server File Stores 7-11
7.5.3.2.1 Disabling File Locking for the Default File Store... 7-12
7.5.3.2.2 Disabling File Locking for a Custom File Store ... 7-12
7.5.3.2.3 Disabling File Locking for a JMS Paging File Store....................................... 7-13
7.5.3.2.4 Disabling File Locking for a Diagnostics File Store....................................... 7-14

8 DataBase Tuning

8.1 General Suggestions ... 8-1
8.2 Database-Specific Tuning .. 8-2
8.2.1 Oracle... 8-2
8.2.2 Microsoft SQL Server .. 8-3
8.2.3 Sybase .. 8-3

9 Tuning WebLogic Server EJBs

9.1 General EJB Tuning Tips.. 9-1
9.2 Tuning EJB Caches.. 9-2
9.2.1 Tuning the Stateful Session Bean Cache... 9-2
9.2.2 Tuning the Entity Bean Cache.. 9-2
9.2.2.1 Transaction-Level Caching.. 9-2
9.2.2.2 Caching between Transactions ... 9-2
9.2.2.3 Ready Bean Caching .. 9-3
9.2.3 Tuning the Query Cache... 9-3
9.3 Tuning EJB Pools... 9-3
9.3.1 Tuning the Stateless Session Bean Pool .. 9-3
9.3.2 Tuning the MDB Pool.. 9-4
9.3.3 Tuning the Entity Bean Pool .. 9-4
9.4 CMP Entity Bean Tuning ... 9-4
9.4.1 Use Eager Relationship Caching ... 9-4
9.4.1.1 Using Inner Joins .. 9-5
9.4.2 Use JDBC Batch Operations ... 9-5
9.4.3 Tuned Updates... 9-5
9.4.4 Using Field Groups.. 9-5
9.4.5 include-updates.. 9-6
9.4.6 call-by-reference... 9-6
9.4.7 Bean-level Pessimistic Locking .. 9-6

vii

9.4.8 Concurrency Strategy.. 9-7
9.5 Tuning In Response to Monitoring Statistics.. 9-8
9.5.1 Cache Miss Ratio.. 9-8
9.5.2 Lock Waiter Ratio .. 9-8
9.5.3 Lock Timeout Ratio ... 9-8
9.5.4 Pool Miss Ratio... 9-9
9.5.5 Destroyed Bean Ratio... 9-10
9.5.6 Pool Timeout Ratio ... 9-10
9.5.7 Transaction Rollback Ratio.. 9-10
9.5.8 Transaction Timeout Ratio .. 9-11

10 Tuning Message-Driven Beans

10.1 Use Transaction Batching ... 10-1
10.2 MDB Thread Management ... 10-1
10.2.1 Determining the Number of Concurrent MDBs .. 10-2
10.2.2 Selecting a Concurrency Strategy... 10-2
10.2.3 Thread Utilization When Using WebLogic Destinations ... 10-3
10.2.4 Limitations for Multi-threaded Topic MDBs.. 10-3
10.3 Best Practices for Configuring and Deploying MDBs Using Distributed Topics 10-4
10.4 Using MDBs with Foreign Destinations ... 10-4
10.4.1 Concurrency for MDBs that Process Messages from Foreign Destinations............. 10-4
10.4.2 Thread Utilization for MDBs that Process Messages from Foreign Destinations ... 10-4
10.5 Token-based Message Polling for Transactional MDBs Listening on Queues/Topics . 10-5
10.6 Compatibility for WLS 10.0 and Earlier-style Polling .. 10-6

11 Tuning Data Sources

11.1 Tune the Number of Database Connections .. 11-1
11.2 Waste Not.. 11-2
11.3 Use Test Connections on Reserve with Care ... 11-2
11.4 Cache Prepared and Callable Statements... 11-3
11.5 Using Pinned-To-Thread Property to Increase Performance .. 11-3
11.6 Database Listener Timeout under Heavy Server Loads .. 11-3
11.7 Disable Wrapping of Data Type Objects .. 11-3
11.8 Advanced Configurations for Oracle Drivers and Databases... 11-4
11.9 Use Best Design Practices ... 11-4

12 Tuning Transactions

12.1 Global Transaction Tuning ... 12-1
12.2 XA Transaction Cluster Affinity .. 12-1
12.3 Logging Last Resource Transaction Optimization.. 12-2
12.3.1 LLR Tuning Guidelines.. 12-2
12.4 Read-only, One-Phase Commit Optimizations ... 12-2
12.5 Configure XA Transactions without TLogs ... 12-3

viii

13 Tuning WebLogic JMS

13.1 JMS Performance & Tuning Check List .. 13-1
13.2 Handling Large Message Backlogs ... 13-3
13.2.1 Improving Message Processing Performance .. 13-3
13.2.2 Controlling Message Production.. 13-5
13.2.2.1 Drawbacks to Controlling Message Production ... 13-5
13.3 Cache and Re-use Client Resources .. 13-5
13.4 Tuning Distributed Queues.. 13-6
13.5 Tuning Topics... 13-7
13.5.1 Tuning Non-durable Topic Publishers.. 13-7
13.6 Tuning for Large Messages .. 13-7
13.7 Defining Quota... 13-8
13.7.1 Quota Resources ... 13-8
13.7.2 Destination-Level Quota.. 13-9
13.7.3 JMS Server-Level Quota... 13-9
13.8 Blocking Senders During Quota Conditions.. 13-9
13.8.1 Defining a Send Timeout on Connection Factories ... 13-9
13.8.2 Specifying a Blocking Send Policy on JMS Servers.. 13-10
13.9 Tuning MessageMaximum... 13-11
13.9.1 Tuning MessageMaximum Limitations .. 13-11
13.10 Setting Maximum Message Size for Network Protocols.. 13-11
13.11 Compressing Messages ... 13-12
13.12 Paging Out Messages To Free Up Memory ... 13-12
13.12.1 Specifying a Message Paging Directory .. 13-13
13.12.2 Tuning the Message Buffer Size Option.. 13-13
13.13 Controlling the Flow of Messages on JMS Servers and Destinations 13-14
13.13.1 How Flow Control Works ... 13-14
13.13.2 Configuring Flow Control .. 13-14
13.13.3 Flow Control Thresholds ... 13-15
13.14 Handling Expired Messages... 13-16
13.14.1 Defining a Message Expiration Policy ... 13-16
13.14.2 Configuring an Expiration Policy on Topics .. 13-17
13.14.3 Configuring an Expiration Policy on Queues... 13-17
13.14.4 Configuring an Expiration Policy on Templates.. 13-18
13.14.5 Defining an Expiration Logging Policy ... 13-18
13.14.6 Expiration Log Output Format ... 13-19
13.14.7 Tuning Active Message Expiration .. 13-19
13.14.8 Configuring a JMS Server to Actively Scan Destinations for Expired Messages .. 13-19
13.15 Tuning Applications Using Unit-of-Order... 13-20
13.15.1 Best Practices ... 13-20
13.15.2 Using UOO and Distributed Destinations .. 13-20
13.15.3 Migrating Old Applications to Use UOO ... 13-21
13.16 Using One-Way Message Sends .. 13-21
13.16.1 Configure One-Way Sends On a Connection Factory... 13-22
13.16.2 One-Way Send Support In a Cluster With a Single Destination 13-22
13.16.3 One-Way Send Support In a Cluster With Multiple Destinations 13-22
13.16.4 When One-Way Sends Are Not Supported .. 13-22

ix

13.16.5 Different Client and Destination Hosts ... 13-23
13.16.6 XA Enabled On Client's Host Connection Factory .. 13-23
13.16.7 Higher QOS Detected... 13-23
13.16.8 Destination Quota Exceeded... 13-23
13.16.9 Change In Server Security Policy ... 13-23
13.16.10 Change In JMS Server or Destination Status .. 13-23
13.16.11 Looking Up Logical Distributed Destination Name ... 13-24
13.16.12 Hardware Failure.. 13-24
13.16.13 One-Way Send QOS Guidelines... 13-24
13.17 Tuning the Messaging Performance Preference Option .. 13-25
13.17.1 Messaging Performance Configuration Parameters.. 13-25
13.17.2 Compatibility With the Asynchronous Message Pipeline.. 13-26
13.18 Client-side Thread Pools... 13-26
13.19 Best Practices for JMS .NET Client Applications... 13-27
13.20 Considerations for Oracle Data Guard Environments ... 13-27
13.20.1 Pause Destinations for Planned Down Time.. 13-27
13.20.2 Migrate JMS Services for Unexpected Outages.. 13-27

14 Tuning WebLogic JMS Store-and-Forward

14.1 Best Practices for JMS SAF.. 14-1
14.2 Tuning Tips for JMS SAF .. 14-1

15 Tuning WebLogic Message Bridge

15.1 Best Practices .. 15-1
15.2 Changing the Batch Size ... 15-1
15.3 Changing the Batch Interval... 15-2
15.4 Changing the Quality of Service.. 15-2
15.5 Using Multiple Bridge Instances ... 15-2
15.6 Changing the Thread Pool Size.. 15-2
15.7 Avoiding Durable Subscriptions ... 15-3
15.8 Co-locating Bridges with Their Source or Target Destination .. 15-3
15.9 Changing the Asynchronous Mode Enabled Attribute ... 15-3
15.10 Tuning Environments with Many Bridges... 15-4

16 Tuning Resource Adapters

16.1 Classloading Optimizations for Resource Adapters .. 16-1
16.2 Connection Optimizations.. 16-1
16.3 Thread Management ... 16-2
16.4 InteractionSpec Interface... 16-2

17 Tuning Web Applications

17.1 Best Practices .. 17-1
17.1.1 Disable Page Checks... 17-1
17.1.2 Use Custom JSP Tags ... 17-1
17.1.3 Precompile JSPs... 17-2

x

17.1.4 Use HTML Template Compression ... 17-2
17.1.5 Use Service Level Agreements.. 17-2
17.1.6 Related Reading .. 17-2
17.2 Session Management ... 17-2
17.2.1 Managing Session Persistence .. 17-2
17.2.2 Minimizing Sessions... 17-3
17.2.3 Aggregating Session Data ... 17-3
17.3 Pub-Sub Tuning Guidelines ... 17-4
17.4 Enabling GZIP Compression.. 17-4

18 Tuning Web Services

18.1 Web Services Best Practices .. 18-1
18.2 Tuning Web Service Reliable Messaging Agents .. 18-2
18.3 Tuning Heavily Loaded Systems to Improve Web Service Performance 18-2
18.3.1 Setting the Work Manager Thread Pool Minimum Size Constraint 18-3
18.3.2 Setting the Buffering Sessions... 18-3
18.3.3 Releasing Asynchronous Resources .. 18-3

19 Tuning WebLogic Tuxedo Connector

19.1 Configuration Guidelines ... 19-1
19.2 Best Practices .. 19-2

A Capacity Planning

A.1 Capacity Planning Factors .. A-1
A.1.1 Programmatic and Web-based Clients .. A-2
A.1.2 RMI and Server Traffic... A-2
A.1.3 SSL Connections and Performance .. A-2
A.1.4 WebLogic Server Process Load... A-3
A.1.5 Database Server Capacity and User Storage Requirements ... A-3
A.1.6 Concurrent Sessions ... A-3
A.1.7 Network Load ... A-4
A.1.8 Clustered Configurations .. A-4
A.1.9 Server Migration ... A-4
A.1.10 Application Design... A-5
A.2 Assessing Your Application Performance Objectives .. A-5
A.3 Hardware Tuning .. A-5
A.3.1 Benchmarks for Evaluating Performance ... A-5
A.3.2 Supported Platforms .. A-5
A.4 Network Performance ... A-5
A.4.1 Determining Network Bandwidth ... A-6
A.5 Related Information .. A-6

xi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Tuning Performance of Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

[2] This chapter describes the contents and organization of this guide—Tuning Performance
of Oracle WebLogic Server.

This chapter includes the following sections:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.3, "Performance Features of this Release"

1.1 Document Scope and Audience
This document is written for people who monitor performance and tune the
components in a WebLogic Server environment. It is assumed that readers know
server administration and hardware performance tuning fundamentals, WebLogic
Server, XML, and the Java programming language.

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization

of this guide.

■ Chapter 2, "Top Tuning Recommendations for WebLogic Server," discusses the
most frequently recommended steps for achieving optimal performance tuning for
applications running on WebLogic Server.

■ Chapter 3, "Performance Tuning Roadmap," provides a roadmap to help tune your
application environment to optimize performance.

■ Chapter 4, "Tuning Java Virtual Machines (JVMs)," discusses JVM tuning
considerations.

■ Chapter 5, "Tuning WebLogic Diagnostic Framework and Java Flight Recorder
Integration," provides information on how WebLogic Diagnostic Framework
(WLDF) works with Java Flight Recorder.

■ Chapter 6, "Tuning WebLogic Server," contains information on how to tune
WebLogic Server to match your application needs.

■ Chapter 7, "Tuning the WebLogic Persistent Store," provides information on how
to tune a persistent store.

■ Chapter 8, "DataBase Tuning," provides information on how to tune your data
base.

Performance Features of this Release

1-2 Tuning Performance of Oracle WebLogic Server

■ Chapter 9, "Tuning WebLogic Server EJBs," provides information on how to tune
applications that use EJBs.

■ Chapter 10, "Tuning Message-Driven Beans," provides information on how to tune
Message-Driven beans.

■ Chapter 11, "Tuning Data Sources," provides information on how to tune JDBC
applications.

■ Chapter 12, "Tuning Transactions," provides information on how to tune Logging
Last Resource transaction optimization.

■ Chapter 13, "Tuning WebLogic JMS," provides information on how to tune
applications that use WebLogic JMS.

■ Chapter 14, "Tuning WebLogic JMS Store-and-Forward," provides information on
how to tune applications that use JMS Store-and-Forward.

■ Chapter 15, "Tuning WebLogic Message Bridge," provides information on how to
tune applications that use the WebLogic Message Bridge.

■ Chapter 16, "Tuning Resource Adapters," provides information on how to tune
applications that use resource adaptors.

■ Chapter 17, "Tuning Web Applications," provides best practices for tuning
WebLogic Web applications and application resources:

■ Chapter 18, "Tuning Web Services," provides information on how to tune
applications that use Web services.

■ Chapter 19, "Tuning WebLogic Tuxedo Connector," provides information on how
to tune applications that use WebLogic Tuxedo Connector.

■ Appendix A, "Capacity Planning," provides an introduction to capacity planning.

1.3 Performance Features of this Release
WebLogic Server introduces the following performance enhancements:

■ Section 6.8.4, "Improving Cluster Throughput using XA Transaction Cluster
Affinity"

■ Section 12.5, "Configure XA Transactions without TLogs."

2

Top Tuning Recommendations for WebLogic Server 2-1

2Top Tuning Recommendations for WebLogic
Server

[3] This chapter provides a short list of top performance tuning recommendations. Tuning
WebLogic Server and your WebLogic Server application is a complex and iterative
process. To get you started, we have created a short list of recommendations to help
you optimize your application's performance. These tuning techniques are applicable
to nearly all WebLogic applications.

This chapter includes the following sections:

■ Section 2.1, "Tune Pool Sizes"

■ Section 2.2, "Use the Prepared Statement Cache"

■ Section 2.3, "Use Logging Last Resource Optimization"

■ Section 2.4, "Tune Connection Backlog Buffering"

■ Section 2.5, "Use Optimistic or Read-only Concurrency"

■ Section 2.6, "Use Local Interfaces"

■ Section 2.7, "Use eager-relationship-caching"

■ Section 2.8, "Tune HTTP Sessions"

■ Section 2.9, "Tune Messaging Applications"

2.1 Tune Pool Sizes
Provide pool sizes (such as pools for JDBC connections, Stateless Session EJBs, and
MDBs) that maximize concurrency for the expected thread utilization.

■ For WebLogic Server releases 9.0 and higher—A server instance uses a self-tuned
thread-pool. The best way to determine the appropriate pool size is to monitor the
pool's current size, shrink counts, grow counts, and wait counts. See Section 6.4,
"Thread Management". Tuning MDBs are a special case, please see Chapter 10,
"Tuning Message-Driven Beans".

2.2 Use the Prepared Statement Cache
The prepared statement cache keeps compiled SQL statements in memory, thus
avoiding a round-trip to the database when the same statement is used later. See
Chapter 11, "Tuning Data Sources".

Use Logging Last Resource Optimization

2-2 Tuning Performance of Oracle WebLogic Server

2.3 Use Logging Last Resource Optimization
When using transactional database applications, consider using the JDBC data source
Logging Last Resource (LLR) transaction policy instead of XA. The LLR optimization
can significantly improve transaction performance by safely eliminating some of the
2PC XA overhead for database processing, especially for two-phase commit database
insert, update, and delete operations. For more information, see Chapter 11, "Tuning
Data Sources".

2.4 Tune Connection Backlog Buffering
You can tune the number of connection requests that a WebLogic Server instance
accepts before refusing additional requests. This tunable applies primarily for Web
applications. See Section 6.5.4, "Tuning Connection Backlog Buffering".

2.5 Use Optimistic or Read-only Concurrency
Use optimistic concurrency with cache-between-transactions or read-only concurrency
with query-caching for CMP EJBs wherever possible. Both of these two options
leverage the Entity Bean cache provided by the EJB container.

■ Optimistic-concurrency with cache-between-transactions work best with
read-mostly beans. Using verify-reads in combination with these provides high
data consistency guarantees with the performance gain of caching. See Chapter 9,
"Tuning WebLogic Server EJBs".

■ Query-caching is a WebLogic Server 9.0 feature that allows the EJB container to
cache results for arbitrary non-primary-key finders defined on read-only EJBs. All
of these parameters can be set in the application/module deployment descriptors.
See Section 9.4.8, "Concurrency Strategy".

2.6 Use Local Interfaces
Use local-interfaces or use call-by-reference semantics to avoid the overhead of
serialization when one EJB calls another or an EJB is called by a servlet/JSP in the
same application. Note the following:

■ In release prior to WebLogic Server 8.1, call-by-reference is turned on by default.
For releases of WebLogic Server 8.1 and higher, call-by-reference is turned off by
default. Older applications migrating to WebLogic Server 8.1 and higher that do
not explicitly turn on call-by-reference may experience a drop in performance.

■ This optimization does not apply to calls across different applications.

2.7 Use eager-relationship-caching
Use eager-relationship-caching wherever possible. This feature allows the EJB
container to load related beans using a single SQL statement. It improves performance
by reducing the number of database calls to load related beans in transactions when a
bean and it's related beans are expected to be used in that transaction. See Chapter 9,
"Tuning WebLogic Server EJBs".

2.8 Tune HTTP Sessions
Optimize your application so that it does as little work as possible when handling
session persistence and sessions. You should also design a session management

Tune Messaging Applications

Top Tuning Recommendations for WebLogic Server 2-3

strategy that suits your environment and application. See Section 17.2, "Session
Management".

2.9 Tune Messaging Applications
Oracle provides messaging users a rich set of performance tunables. In general, you
should always configure quotas and paging. See:

■ Chapter 7, "Tuning the WebLogic Persistent Store"

■ Chapter 13, "Tuning WebLogic JMS"

■ Chapter 14, "Tuning WebLogic JMS Store-and-Forward"

■ Chapter 15, "Tuning WebLogic Message Bridge"

Tune Messaging Applications

2-4 Tuning Performance of Oracle WebLogic Server

3

Performance Tuning Roadmap 3-1

3Performance Tuning Roadmap

[4] This chapter provides a tuning roadmap and tuning tips for you can use to improve
system performance:

This chapter includes the following sections:

■ Section 3.1, "Performance Tuning Roadmap"

■ Section 3.2, "Tuning Tips"

3.1 Performance Tuning Roadmap
The following steps provide a roadmap to help tune your application environment to
optimize performance:

1. Section 3.1.1, "Understand Your Performance Objectives"

2. Section 3.1.2, "Measure Your Performance Metrics"

3. Section 3.1.5, "Locate Bottlenecks in Your System"

4. Section 3.1.6, "Minimize Impact of Bottlenecks"

5. Section 3.1.12, "Achieve Performance Objectives"

3.1.1 Understand Your Performance Objectives
To determine your performance objectives, you need to understand the application
deployed and the environmental constraints placed on the system. Gather information
about the levels of activity that components of the application are expected to meet,
such as:

■ The anticipated number of users.

■ The number and size of requests.

■ The amount of data and its consistency.

■ Determining your target CPU utilization.

Your target CPU usage should not be 100%, you should determine a target CPU
utilization based on your application needs, including CPU cycles for peak usage.
If your CPU utilization is optimized at 100% during normal load hours, you have
no capacity to handle a peak load. In applications that are latency sensitive and
maintaining the ability for a fast response time is important, high CPU usage
(approaching 100% utilization) can reduce response times while throughput stays
constant or even increases because of work queuing up in the server. For such
applications, a 70% - 80% CPU utilization recommended. A good target for
non-latency sensitive applications is about 90%.

Performance Tuning Roadmap

3-2 Tuning Performance of Oracle WebLogic Server

Performance objectives are limited by constraints, such as

■ The configuration of hardware and software such as CPU type, disk size vs. disk
speed, sufficient memory.

There is no single formula for determining your hardware requirements. The
process of determining what type of hardware and software configuration is
required to meet application needs adequately is called capacity planning.
Capacity planning requires assessment of your system performance goals and an
understanding of your application. Capacity planning for server hardware should
focus on maximum performance requirements. See Appendix A, "Capacity
Planning."

■ The ability to interoperate between domains, use legacy systems, support legacy
data.

■ Development, implementation, and maintenance costs.

You will use this information to set realistic performance objectives for your
application environment, such as response times, throughput, and load on specific
hardware.

3.1.2 Measure Your Performance Metrics
After you have determined your performance criteria in Section 3.1.1, "Understand
Your Performance Objectives", take measurements of the metrics you will use to
quantify your performance objectives. The following sections provide information on
measuring basic performance metrics:

■ Section 3.1.3, "Monitor Disk and CPU Utilization"

■ Section 3.1.4, "Monitor Data Transfers Across the Network"

3.1.3 Monitor Disk and CPU Utilization
Run your application under a high load while monitoring the:

■ Application server (disk and CPU utilization)

■ Database server (disk and CPU utilization)

The goal is to get to a point where the application server achieves your target CPU
utilization. If you find that the application server CPU is under utilized, confirm
whether the database is bottle necked. If the database CPU is 100 percent utilized, then
check your application SQL calls query plans. For example, are your SQL calls using
indexes or doing linear searches? Also, confirm whether there are too many ORDER BY
clauses used in your application that are affecting the database CPU.

If you discover that the database disk is the bottleneck (for example, if the disk is 100
percent utilized), try moving to faster disks or to a RAID (redundant array of
independent disks) configuration, assuming the application is not doing more writes
then required.

Once you know the database server is not the bottleneck, determine whether the
application server disk is the bottleneck. Some of the disk bottlenecks for application
server disks are:

■ Persistent Store writes

■ Transaction logging (tlogs)

■ HTTP logging

Performance Tuning Roadmap

Performance Tuning Roadmap 3-3

■ Server logging

The disk I/O on an application server can be optimized using faster disks or RAID,
disabling synchronous JMS writes, using JTA direct writes for tlogs, or increasing the
HTTP log buffer.

3.1.4 Monitor Data Transfers Across the Network
Check the amount of data transferred between the application and the application
server, and between the application server and any remote endpoint. This amount
should not exceed your network bandwidth; otherwise, your network becomes the
bottleneck.

3.1.5 Locate Bottlenecks in Your System
If you determine that neither the network nor the database server is the bottleneck,
start looking at your operating system, JVM, and WebLogic Server configurations.
Most importantly, is the machine running WebLogic Server able to get your target CPU
utilization with a high client load? If the answer is no, then check if there is any
locking taking place in the application. You should profile your application to pinpoint
bottlenecks and improve application performance, see "Java Mission Control."

3.1.6 Minimize Impact of Bottlenecks
In this step, you tune your environment to minimize the impact of bottlenecks on your
performance objectives. It is important to realize that in this step you are minimizing
the impact of bottlenecks, not eliminating them. Tuning allows you to adjust resources
to achieve your performance objectives. For the scope of this document, this includes
(from most important to least important):

■ Section 3.1.7, "Tune Your Application"

■ Section 3.1.8, "Tune your DB"

■ Section 3.1.9, "Tune WebLogic Server Performance Parameters"

■ Section 3.1.10, "Tune Your JVM"

■ Section 3.1.11, "Tune the Operating System"

■ Section 7, "Tuning the WebLogic Persistent Store"

3.1.7 Tune Your Application
To quote the authors of Oracle WebLogic Server: Optimizing WebLogic Server Performance:
"Good application performance starts with good application design. Overly-complex
or poorly-designed applications will perform poorly regardless of the system-level
tuning and best practices employed to improve performance." In other words, a poorly
designed application can create unnecessary bottlenecks. For example, resource
contention could be a case of poor design, rather than inherent to the application
domain.

For more information, see:

■ Chapter 9, "Tuning WebLogic Server EJBs"

■ Chapter 10, "Tuning Message-Driven Beans"

Tip: Even if you find that the CPU is 100 percent utilized, you should
profile your application for performance improvements.

Tuning Tips

3-4 Tuning Performance of Oracle WebLogic Server

■ Chapter 11, "Tuning Data Sources"

■ Chapter 12, "Tuning Transactions"

■ Chapter 13, "Tuning WebLogic JMS"

■ Chapter 14, "Tuning WebLogic JMS Store-and-Forward"

■ Chapter 15, "Tuning WebLogic Message Bridge"

■ Chapter 16, "Tuning Resource Adapters"

■ Chapter 17, "Tuning Web Applications"

■ Chapter 18, "Tuning Web Services"

■ Chapter 19, "Tuning WebLogic Tuxedo Connector"

3.1.8 Tune your DB
Your database can be a major enterprise-level bottleneck. Database optimization can be
complex and vender dependent. See Section 8, "DataBase Tuning".

3.1.9 Tune WebLogic Server Performance Parameters
The WebLogic Server uses a number of OOTB (out-of-the-box) performance-related
parameters that can be fine-tuned depending on your environment and applications.
Tuning these parameters based on your system requirements (rather than running
with default settings) can greatly improve both single-node performance and the
scalability characteristics of an application. See Chapter 6, "Tuning WebLogic Server".

3.1.10 Tune Your JVM
The Java virtual machine (JVM) is a virtual "execution engine" instance that executes
the bytecodes in Java class files on a microprocessor. See Chapter 4, "Tuning Java
Virtual Machines (JVMs)".

3.1.11 Tune the Operating System
Tune your operating system according to your operating system documentation based
on your application environment.

3.1.12 Achieve Performance Objectives
Performance tuning is an iterative process. After you have minimized the impact of
bottlenecks on your system, go to Step 2, Section 3.1.2, "Measure Your Performance
Metrics" and determine if you have met your performance objectives.

3.2 Tuning Tips
This section provides tips and guidelines when tuning overall system performance:

■ Performance tuning is not a silver bullet. Simply put, good system performance
depends on: good design, good implementation, defined performance objectives,
and performance tuning.

■ Performance tuning is ongoing process. Implement mechanisms that provide
performance metrics which you can compare against your performance objectives,
allowing you to schedule a tuning phase before your system fails.

Tuning Tips

Performance Tuning Roadmap 3-5

■ The object is to meet your performance objectives, not eliminate all bottlenecks.
Resources within a system are finite. By definition, at least one resource (CPU,
memory, or I/O) will be a bottleneck in the system. Tuning allows you minimize
the impact of bottlenecks on your performance objectives.

■ Design your applications with performance in mind:

– Keep things simple - avoid inappropriate use of published patterns.

– Apply Java EE performance patterns.

– Optimize your Java code.

Tuning Tips

3-6 Tuning Performance of Oracle WebLogic Server

4

Tuning Java Virtual Machines (JVMs) 4-1

4Tuning Java Virtual Machines (JVMs)

[5] This chapter describes how to configure JVM tuning options for WebLogic Server. The
Java virtual machine (JVM) is a virtual "execution engine" instance that executes the
bytecodes in Java class files on a microprocessor. How you tune your JVM affects the
performance of WebLogic Server and your applications.

This chapter includes the following sections:

■ Section 4.1, "JVM Tuning Considerations"

■ Section 4.3, "Garbage Collection"

■ Section 4.4, "Increasing Java Heap Size for Managed Servers"

4.1 JVM Tuning Considerations
The following table presents general JVM tuning considerations for WebLogic Server.

Table 4–1 General JVM Tuning Considerations

Tuning Factor Information Reference

JVM vendor and version Use only production JVMs on which WebLogic Server has been
certified.

See "Supported Configurations" in What's New in Oracle WebLogic
Server 12.2.1 for links to the latest certification information on
various platforms.

Tuning heap size and
garbage collection

For WebLogic Server heap size tuning details, see Section 4.3,
"Garbage Collection".

Choosing a GC (garbage
collection) scheme

Depending on your application, there are a number of GC
schemes available for managing your system memory, as
described in Section 4.3.2, "Choosing a Garbage Collection
Scheme".

Mixed client/server JVMs Deployments using different JVM versions for the client and
server are supported in WebLogic Server. See "Supported
Configurations" in What's New in Oracle WebLogic Server 12.2.1 for
links to the latest supported mixed client/server JVMs.

UNIX threading models Choices you make about Solaris threading models can have a
large impact on the performance of your JVM on Solaris. You can
choose from multiple threading models and different methods of
synchronization within the model, but this varies from JVM to
JVM.

See "Performance Documentation For the Java Hotspot Virtual
Machine: Threading" at
http://www.oracle.com/technetwork/java/javase/gc-tuning-
6-140523.html.

Changing To a Different JVM

4-2 Tuning Performance of Oracle WebLogic Server

4.2 Changing To a Different JVM
When you create a domain, you choose the JVM that you want to run your domain
and the configuration wizard configures the Oracle start scripts based on your choice.
After you create a domain, if you want to use a different JVM, see "Changing the JVM
That Runs Servers" in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

4.3 Garbage Collection
Garbage collection is the VM's process of freeing up unused Java objects in the Java
heap. The following sections provide information on tuning your VM's garbage
collection:

■ Section 4.3.1, "VM Heap Size and Garbage Collection"

■ Section 4.3.2, "Choosing a Garbage Collection Scheme"

■ Section 4.3.3, "Using Verbose Garbage Collection to Determine Heap Size"

■ Section 4.3.4, "Specifying Heap Size Values"

■ Section 4.3.7, "Automatically Logging Low Memory Conditions"

■ Section 4.3.8, "Manually Requesting Garbage Collection"

■ Section 4.3.9, "Requesting Thread Stacks"

4.3.1 VM Heap Size and Garbage Collection
The Java heap is where the objects of a Java program live. It is a repository for live
objects, dead objects, and free memory. When an object can no longer be reached from
any pointer in the running program, it is considered "garbage" and ready for
collection. A best practice is to tune the time spent doing garbage collection to within
5% of execution time.

The JVM heap size determines how often and how long the VM spends collecting
garbage. An acceptable rate for garbage collection is application-specific and should be
adjusted after analyzing the actual time and frequency of garbage collections. If you
set a large heap size, full garbage collection is slower, but it occurs less frequently. If
you set your heap size in accordance with your memory needs, full garbage collection
is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing
garbage collection while maximizing the number of clients that WebLogic Server can
handle at a given time. To ensure maximum performance during benchmarking, you
might set high heap size values to ensure that garbage collection does not occur during
the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

java.lang.OutOfMemoryError <<no stack trace available>>
java.lang.OutOfMemoryError <<no stack trace available>>
Exception in thread "main"

To modify heap space values, see Section 4.3.4, "Specifying Heap Size Values".

To configure WebLogic Server to detect automatically when you are running out of
heap space and to address low memory conditions in the server, see Section 4.3.7,
"Automatically Logging Low Memory Conditions" and Section 4.3.4, "Specifying Heap
Size Values".

Garbage Collection

Tuning Java Virtual Machines (JVMs) 4-3

4.3.2 Choosing a Garbage Collection Scheme
Depending on which JVM you are using, you can choose from several garbage
collection schemes to manage your system memory. For example, some garbage
collection schemes are more appropriate for a given type of application. Once you
have an understanding of the workload of the application and the different garbage
collection algorithms utilized by the JVM, you can optimize the configuration of the
garbage collection.

Refer to the following links for in-depth discussions of garbage collection options for
your JVM:

■ For an overview of the garbage collection schemes available with Sun's HotSpot
VM, see "Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning" at
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html.

■ For a comprehensive explanation of the collection schemes available, see
"Improving Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1" at
http://www.oracle.com/technetwork/java/index-jsp-138820.html.

4.3.3 Using Verbose Garbage Collection to Determine Heap Size
The verbose garbage collection option (verbosegc) enables you to measure exactly
how much time and resources are put into garbage collection. To determine the most
effective heap size, turn on verbose garbage collection and redirect the output to a log
file for diagnostic purposes.

The following steps outline this procedure:

1. Monitor the performance of WebLogic Server under maximum load while running
your application.

2. Use the -verbosegc option to turn on verbose garbage collection output for your
JVM and redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic
purposes.

For example, on Windows and Solaris, enter the following:

% java -ms32m -mx200m -verbosegc -classpath $CLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\Oracle\Middleware"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy" weblogic.Server
>> logfile.txt 2>&1

where the logfile.txt 2>&1 command redirects both the standard error and
standard output to a log file.

3. Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic.log file, compare
the time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take
longer than 3 to 5 seconds.

Garbage Collection

4-4 Tuning Performance of Oracle WebLogic Server

c. What is your average memory footprint? In other words, what does the heap
settle back down to after each full garbage collection? If the heap always
settles to 85 percent free, you might set the heap size smaller.

4. Review the New generation heap sizes, see Section 4.3.6, "Java HotSpot VM Heap
Size Options".

5. Make sure that the heap size is not larger than the available free RAM on your
system.

Use as large a heap size as possible without causing your system to "swap" pages
to disk. The amount of free RAM on your system depends on your hardware
configuration and the memory requirements of running processes on your
machine. See your system administrator for help in determining the amount of
free RAM on your system.

6. If you find that your system is spending too much time collecting garbage (your
allocated virtual memory is more than your RAM can handle), lower your heap
size.

Typically, you should use 80 percent of the available RAM (not taken by the
operating system or other processes) for your JVM.

7. If you find that you have a large amount of available free RAM remaining, run
more instances of WebLogic Server on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your
JVM spends doing garbage collection while maximizing the number of clients that
WebLogic Server can handle at a given time.

4.3.4 Specifying Heap Size Values
System performance is greatly influenced by the size of the Java heap available to the
JVM. This section describes the command line options you use to define the heap sizes
values.You must specify Java heap size values each time you start an instance of
WebLogic Server. This can be done either from the java command line or by
modifying the default values in the sample startup scripts that are provided with the
WebLogic distribution for starting WebLogic Server.

■ Section 4.3.5, "Tuning Tips for Heap Sizes"

■ Section 4.3.6, "Java HotSpot VM Heap Size Options"

4.3.5 Tuning Tips for Heap Sizes
The following section provides general guidelines for tuning VM heap sizes:

■ The heap sizes should be set to values such that the maximum amount of memory
used by the VM does not exceed the amount of available physical RAM. If this
value is exceeded, the OS starts paging and performance degrades significantly.
The VM always uses more memory than the heap size. The memory required for
internal VM functionality, native libraries outside of the VM, and permanent
generation memory (for the Sun VM only: memory required to store classes and
methods) is allocated in addition to the heap size settings.

■ When using a generational garbage collection scheme, the nursery size should not
exceed more than half the total Java heap size. Typically, 25% to 40% of the heap
size is adequate.

Garbage Collection

Tuning Java Virtual Machines (JVMs) 4-5

■ In production environments, set the minimum heap size and the maximum heap
size to the same value to prevent wasting VM resources used to constantly grow
and shrink the heap. This also applies to the New generation heap sizes.

4.3.6 Java HotSpot VM Heap Size Options
You achieve best performance by individually tuning each application. However,
configuring the Java HotSpot VM heap size options listed in the following table when
starting WebLogic Server increases performance for most applications.

These options may differ depending on your architecture and operating system. See
your vendor's documentation for platform-specific JVM tuning options.

For example, when you start a WebLogic Server instance from a java command line,
you could specify the HotSpot VM heap size values as follows:

$ java -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8 -Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter 'k' or 'K' to the
value to indicate kilobytes, 'm' or 'M' to indicate megabytes, and 'g' or 'G' to indicate
gigabytes. The example above allocates 128 megabytes of memory to the New
generation and maximum New generation heap sizes, and 512 megabytes of memory
to the minimum and maximum heap sizes for the WebLogic Server instance running
in the JVM.

4.3.6.1 Other Java HotSpot VM Options
Oracle provides other standard and non-standard command-line options to improve
the performance of your VM. How you use these options depends on how your
application is coded.

Table 4–2 Java Heap Size Options

Task Option Comments

Setting the New
generation heap size

-XX:NewSize As a general rule, set -XX:NewSize to be
one-fourth the size of the heap size. Increase
the value of this option for larger numbers
of short-lived objects.

Be sure to increase the New generation as
you increase the number of processors.
Memory allocation can be parallel, but
garbage collection is not parallel.

Setting the maximum
New generation heap
size

-XX:MaxNewSize Set the maximum size of the New
Generation heap size.

Setting New heap size
ratios

-XX:SurvivorRatio The New generation area is divided into
three sub-areas: Eden, and two survivor
spaces that are equal in size.

Configure the ratio of the Eden/survivor
space size. Try setting this value to 8, and
then monitor your garbage collection.

Setting initial heap size -Xms As a general rule, set initial heap size
(-Xms) equal to the maximum heap size
(-Xmx) to minimize garbage collections.

Setting maximum heap
size

-Xmx Set the maximum size of the heap.

Increasing Java Heap Size for Managed Servers

4-6 Tuning Performance of Oracle WebLogic Server

Test both your client and server JVMs to see which options perform better for your
particular application. See
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.ht
ml for more information on the command-line options and environment variables that
can affect the performance characteristics of the Java HotSpot Virtual Machine.

For additional examples of the HotSpot VM options, see:

■ "Standard Options for Windows (Win32) VMs" at
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html.

■ "Standard Options for Solaris VMs and Linux VMs" at
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/java.html.

The Java Virtual Machine document provides a detailed discussion of the Client and
Server implementations of the Java virtual machine for Java SE at
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/.

4.3.7 Automatically Logging Low Memory Conditions
WebLogic Server enables you to automatically log low memory conditions observed
by the server. WebLogic Server detects low memory by sampling the available free
memory a set number of times during a time interval. At the end of each interval, an
average of the free memory is recorded and compared to the average obtained at the
next interval. If the average drops by a user-configured amount after any sample
interval, the server logs a low memory warning message in the log file and sets the
server health state to "warning." See "Log low memory conditions" in Oracle WebLogic
Server Administration Console Online Help.

4.3.8 Manually Requesting Garbage Collection
You may find it necessary to manually request full garbage collection from the
WebLogic Server Administration Console. When you do, remember that garbage
collection is costly as the JVM often examines every living object in the heap. See
"Manually request garbage collection" in Oracle WebLogic Server Administration Console
Online Help.

4.3.9 Requesting Thread Stacks
You may find it necessary to display thread stacks while tuning your applications. See
"Display thread stacks" in Oracle WebLogic Server Administration Console Online Help.

4.4 Increasing Java Heap Size for Managed Servers
For better performance, you may need to increase the heap size for each Managed
Server in your environment.

The following sections provide information on how to modify the java heap size for
managed servers.

■ Section 4.4.1, "Using the Administration Console to Set Java Heap Size"

■ Section 4.4.2, "Modify the startManagedWebLogic Script to Set Java Heap Size"

■ Section 4.4.3, "Using the Command Line to Set Java Heap Size"

■ Section 4.4.4, "Determining the Memory Values Used by a Managed Server"

See "Configuring Remote Startup Arguments" in Administering Node Manager for Oracle
WebLogic Server.

Increasing Java Heap Size for Managed Servers

Tuning Java Virtual Machines (JVMs) 4-7

4.4.1 Using the Administration Console to Set Java Heap Size
If you use Node Manager to start the Managed Servers, you can specify a heap size as
a Java argument on the Server Start tab for each Managed Server. See "Increasing the
Java Heap size for a managed server" in the Oracle WebLogic Server Administration
Console Online Help. Your heap size values are then persisted in the
startup.properties file for the server.

4.4.2 Modify the startManagedWebLogic Script to Set Java Heap Size
You can update the startManagedWebLogic script with the required heap size in JAVA_
OPTIONS. For example:

JAVA_OPTIONS="-Xms2g -Xmx2g" ${JAVA_OPTIONS}

See "Starting Managed Servers with a Startup Script" in Administering Server Startup
and Shutdown for Oracle WebLogic Server.

4.4.3 Using the Command Line to Set Java Heap Size
You can pass JVM parameters when starting a managed server by invoking
weblogic.Server class in a Java command. See "weblogic.Server Command-Line
Reference" in the Command Reference for Oracle WebLogic Server.

4.4.4 Determining the Memory Values Used by a Managed Server
Start scripts and the Administration Console (the startup.properties file) are
common ways to configure memory arguments in managed servers. Often, they are
set in multiple places and with different values. How do you determine which values
are actually used by a running managed server?

A running managed server always uses the last set of memory arguments passed to
the server during startup. You can verify this by looking through the log files. If you
see the memory arguments listed multiple times, the last set in the output contains the
values used by the server. If you used the Administration Console to set the values, see
Section 4.4.1, "Using the Administration Console to Set Java Heap Size," the
startup.properties file is always processed last, after all scripts. This provides a
convenient method to tune memory size for an individual managed server when using
common scripts. If you prefer not to include memory arguments that are not actually
used in the environment, you will need to remove any extraneous memory arguments
such as MEM_ARGS and JAVA_OPTONS from the scripts used to start a managed server.

Increasing Java Heap Size for Managed Servers

4-8 Tuning Performance of Oracle WebLogic Server

5

Tuning WebLogic Diagnostic Framework and Java Flight Recorder Integration 5-1

5Tuning WebLogic Diagnostic Framework and
Java Flight Recorder Integration

[6] This chapter provides information on how to tune WLDF and Java Flight Recorder. See
"Using WLDF with Java Flight Recorder" in Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server.

This chapter includes the following sections:

■ Section 5.1, "Using Java Flight Recorder"

■ Section 5.2, "Using WLDF"

■ Section 5.3, "Tuning Considerations"

5.1 Using Java Flight Recorder
Java Flight Recorder is a performance monitoring and profiling tool that records
diagnostic information on a continuous basis, making it always available, even in the
wake of catastrophic failure such as a system crash. Java Flight Recorder is available in
Oracle HotSpot. When WebLogic Server is configured with HotSpot, Java Flight
Recorder is not enabled by default. See "Using Java Flight Recorder with Oracle
HotSpot" in Configuring and Using the Diagnostics Framework for Oracle WebLogic Server,
for information about how to enable Java Flight Recorder with WebLogic Server.

5.2 Using WLDF
If WebLogic Server is configured with Oracle HotSpot, and the Java Flight Recorder is
enabled, the Java Flight Recorder data is automatically also captured in the diagnostic
image capture. This data can be extracted from the diagnostic image capture and
viewed in Java Mission Control. If Java Flight Recorder is not enabled, or if WebLogic
Server is configured with a different JVM, the Java Flight Recorder data is not captured
in the diagnostics image capture.

The volume of Java Flight Recorder data that is captured can be configured using the
Diagnostic Volume attribute in the WebLogic Server Administration Console, see
"Configuring WLDF Diagnostic Volume" in Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server. You can also set the volume using WLST.

5.3 Tuning Considerations
In most environments, there is little performance impact when the Diagnostic Volume
is set to Low and the most performance impact if Diagnostic Volume is set to High. The

Tuning Considerations

5-2 Tuning Performance of Oracle WebLogic Server

volume of diagnostic data produced by WebLogic Server needs to be weighed against
potential performance loss.

6

Tuning WebLogic Server 6-1

6Tuning WebLogic Server

[7] This chapter describes how to tune WebLogic Server to match your application needs.

This chapter includes the following sections:

■ Section 6.1, "Setting Java Parameters for Starting WebLogic Server"

■ Section 6.2, "Development vs. Production Mode Default Tuning Values"

■ Section 6.3, "Deployment"

■ Section 6.4, "Thread Management"

■ Section 6.5, "Tuning Network I/O"

■ Section 6.6, "Multitenancy Tuning Recommendations"

■ Section 6.7, "Optimize Java Expressions"

■ Section 6.8, "Using WebLogic Server Clusters to Improve Performance"

■ Section 6.9, "Monitoring a WebLogic Server Domain"

■ Section 6.10, "Tuning Class and Resource Loading"

■ Section 6.11, "SSL Considerations"

6.1 Setting Java Parameters for Starting WebLogic Server
Java parameters must be specified whenever you start WebLogic Server. For simple
invocations, this can be done from the command line with the weblogic.Server
command. However, because the arguments needed to start WebLogic Server from the
command line can be lengthy and prone to error, Oracle recommends that you
incorporate the command into a script. To simply this process, you can modify the
default values in the sample scripts that are provided with the WebLogic distribution
to start WebLogic Server, as described in "Specifying Java Options for a WebLogic
Server Instance" in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

If you used the Configuration Wizard to create your domain, the WebLogic startup
scripts are located in the domain-name directory where you specified your domain. By
default, this directory is ORACLE_HOME\user_projects\domain\domain-name, where
ORACLE_HOME is the directory you specified as the Oracle Home when you installed
Oracle WebLogic Server, and domain-name is the name of the domain directory defined
by the selected configuration template.

You need to modify some default Java values in these scripts to fit your environment
and applications. The important performance tuning parameters in these files are the
JAVA_HOME parameter and the Java heap size parameters:

Development vs. Production Mode Default Tuning Values

6-2 Tuning Performance of Oracle WebLogic Server

■ Change the value of the variable JAVA_HOME to the location of your JDK. For
example:

set JAVA_HOME=myjdk_location

where myjdk_location is the path to your supported JDK for this release. See "Oracle
Fusion Middleware Supported System Configurations."

■ For higher performance throughput, set the minimum java heap size equal to the
maximum heap size. For example:

"%JAVA_HOME%\bin\java" -server –Xms512m –Xmx512m -classpath %CLASSPATH% -

See Section 4.3.4, "Specifying Heap Size Values" for details about setting heap size
options.

6.2 Development vs. Production Mode Default Tuning Values
You can indicate whether a domain is to be used in a development environment or a
production environment. WebLogic Server uses different default values for various
services depending on the type of environment you specify. Specify the startup mode
for your domain as shown in the following table.

The following table lists the performance-related configuration parameters that differ
when switching from development to production startup mode.

Table 6–1 Startup Modes

Choose this mode when . . .

Development You are creating your applications. In this mode, the
configuration of security is relatively relaxed, allowing you to
auto-deploy applications.

Production Your application is running in its final form. In this mode,
security is fully configured.

Table 6–2 Differences Between Development and Production Modes

Tuning Parameter In development mode . . . In production mode . . .

SSL You can use the demonstration
digital certificates and the
demonstration keystores provided
by the WebLogic Server security
services. With these certificates,
you can design your application
to work within environments
secured by SSL.

For more information about
managing security, see
"Configuring SSL" in Securing
WebLogic Server.

You should not use the
demonstration digital
certificates and the
demonstration keystores. If
you do so, a warning message
is displayed.

Deployment

Tuning WebLogic Server 6-3

For information on switching the startup mode from development to production, see
"Domain Modes" in the Administering Server Environments for Oracle WebLogic Server.

6.3 Deployment
The following sections provide information on how to improve deployment
performance:

■ Section 6.3.1, "On-demand Deployment of Internal Applications"

■ Section 6.3.2, "Use FastSwap Deployment to Minimize Redeployment Time"

■ Section 6.3.3, "Generic Overrides"

6.3.1 On-demand Deployment of Internal Applications
WebLogic Server deploys many internal applications during startup. Many of these
internal applications are not needed by every user. You can configure WebLogic Server
to wait and deploy these applications on the first access (on-demand) instead of
always deploying them during server startup. This can conserve memory and CPU
time during deployment as well as improving startup time and decreasing the base
memory footprint for the server. For a development domain, the default is for WLS to
deploy internal applications on-demand. For a production-mode domain, the default
is for WLS to deploy internal applications as part of server startup. For more
information on how to use and configure this feature, see On-demand Deployment of
Internal Applications in Deploying Applications to Oracle WebLogic Server.

6.3.2 Use FastSwap Deployment to Minimize Redeployment Time
In deployment mode, you can set WebLogic Server to redefine Java classes in-place
without reloading the ClassLoader. This means that you do not have to wait for an
application to redeploy and then navigate back to wherever you were in the Web page
flow. Instead, you can make your changes, auto compile, and then see the effects
immediately. For more information on how to use and configure this feature, see Using

Deploying Applications WebLogic Server instances can
automatically deploy and update
applications that reside in the
domain_name/autodeploy
directory (where domain_name is
the name of a domain).

It is recommended that this
method be used only in a
single-server development
environment.

For more information, see
"Auto-Deploying Applications in
Development Domains" in
Deploying Applications to Oracle
WebLogic Server.

The auto-deployment feature is
disabled, so you must use the
WebLogic Server
Administration Console, the
weblogic.Deployer tool, or the
WebLogic Scripting Tool
(WLST). For more information,
see "Understanding WebLogic
Server Deployment" in
Deploying Applications to Oracle
WebLogic Server.

Web Services Test Client Is enabled by default. Is disabled (and undeployed),
by default. See "Enabling and
Disabling the Web Services Test
Client" in Administering Web
Services.

Table 6–2 (Cont.) Differences Between Development and Production Modes

Tuning Parameter In development mode . . . In production mode . . .

Thread Management

6-4 Tuning Performance of Oracle WebLogic Server

FastSwap Deployment to Minimize Redeployment in Deploying Applications to
WebLogic Server.

6.3.3 Generic Overrides
Generic overrides allow you to override application specific property files without
having to crack a jar file by placing application specific files to be overridden into the
AppFileOverrides optional subdirectory. For more information on how to use and
configure this feature, see "Generic File Loading Overrides" in Deploying Applications to
WebLogic Server.

6.4 Thread Management
WebLogic Server provides the following mechanisms to manage threads to perform
work.

■ Section 6.4.1, "Tuning a Work Manager"

■ Section 6.4.4, "Understanding the Differences Between Work Managers and
Execute Queues"

■ Section 6.4.5, "Migrating from Previous Releases"

■ Section 6.4.6, "Tuning the Stuck Thread Detection Behavior"

6.4.1 Tuning a Work Manager
In this release, WebLogic Server allows you to configure how your application
prioritizes the execution of its work. Based on rules you define and by monitoring
actual runtime performance, WebLogic Server can optimize the performance of your
application and maintain service level agreements (SLA).

You tune the thread utilization of a server instance by defining rules and constraints
for your application by defining a Work Manger and applying it either globally to
WebLogic Server domain or to a specific application component. The primary tuning
considerations are:

■ Section 6.4.2, "How Many Work Managers are Needed?"

■ Section 6.4.3, "What are the SLA Requirements for Each Work Manager?"

See "Using Work Managers to Optimize Scheduled Work" in Administering Server
Environments for Oracle WebLogic Server.

6.4.2 How Many Work Managers are Needed?
Each distinct SLA requirement needs a unique work manager.

6.4.3 What are the SLA Requirements for Each Work Manager?
Service level agreement (SLA) requirements are defined by instances of request classes.
A request class expresses a scheduling guideline that a server instance uses to allocate
threads. See "Understanding Work Managers" in Administering Server Environments for
Oracle WebLogic Server.

6.4.4 Understanding the Differences Between Work Managers and Execute Queues
The easiest way to conceptually visualize the difference between the execute queues of
previous releases with work managers is to correlate execute queues (or rather,

Thread Management

Tuning WebLogic Server 6-5

execute-queue managers) with work managers and decouple the one-to-one
relationship between execute queues and thread pools.

For releases prior to WebLogic Server 9.0, incoming requests are put into a default
execute queue or a user-defined execute queue. Each execute queue has an associated
execute queue manager that controls an exclusive, dedicated thread pool with a fixed
number of threads in it. Requests are added to the queue on a first-come-first-served
basis. The execute-queue manager then picks the first request from the queue and an
available thread from the associated thread pool and dispatches the request to be
executed by that thread.

For releases of WebLogic Server 9.0 and higher, there is a single priority-based execute
queue in the server. Incoming requests are assigned an internal priority based on the
configuration of work managers you create to manage the work performed by your
applications. The server increases or decreases threads available for the execute queue
depending on the demand from the various work-managers. The position of a request
in the execute queue is determined by its internal priority:

■ The higher the priority, closer it is placed to the head of the execute queue.

■ The closer to the head of the queue, more quickly the request will be dispatched a
thread to use.

Work managers provide you the ability to better control thread utilization (server
performance) than execute-queues, primarily due to the many ways that you can
specify scheduling guidelines for the priority-based thread pool. These scheduling
guidelines can be set either as numeric values or as the capacity of a server-managed
resource, like a JDBC connection pool.

6.4.5 Migrating from Previous Releases
If you upgrade application domains from prior releases that contain execute queues,
the resulting 9.x domain will contain execute queues.

■ Migrating application domains from a previous release to WebLogic Server 9.x
does not automatically convert an execute queues to work manager.

■ If execute queues are present in the upgraded application configuration, the server
instance assigns work requests appropriately to the execute queue specified in the
dispatch-policy.

■ Requests without a dispatch-policy use the self-tuning thread pool.

See "Roadmap for Upgrading Your Application Environment" in Upgrading Oracle
WebLogic Server.

6.4.6 Tuning the Stuck Thread Detection Behavior
WebLogic Server automatically detects when a thread in an execute queue becomes
"stuck." Because a stuck thread cannot complete its current work or accept new work,
the server logs a message each time it diagnoses a stuck thread.

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a
set period of time. You can tune a server's thread detection behavior by changing the
length of time before a thread is diagnosed as stuck, and by changing the frequency
with which the server checks for stuck threads. Although you can change the criteria
WebLogic Server uses to determine whether a thread is stuck, you cannot change the
default behavior of setting the "warning" and "critical" health states when all threads
in a particular execute queue become stuck. For more information, see "Configuring
WebLogic Server to Avoid Overload Conditions" in Administering Server Environments

Tuning Network I/O

6-6 Tuning Performance of Oracle WebLogic Server

for Oracle WebLogic Server. To configure stuck thread detection behavior, see "Tuning
execute thread detection behavior" in Oracle WebLogic Server Administration Console
Online Help.

6.5 Tuning Network I/O
The following sections provide information on network communication between
clients and servers (including T3 and IIOP protocols, and their secure versions):

■ Section 6.5.1, "Tuning Muxers"

■ Section 6.5.2, "Network Channels"

■ Section 6.5.3, "Reducing the Potential for Denial of Service Attacks"

■ Section 6.5.4, "Tuning Connection Backlog Buffering"

■ Section 6.5.5, "Tuning Cached Connections"

6.5.1 Tuning Muxers
WebLogic Server uses software modules called muxers to read incoming requests on
the server and incoming responses on the client. WebLogic Server supports the
following muxer types:

■ Section 6.5.1.1, "Non-Blocking IO Muxer"

■ Section 6.5.1.2, "Other Muxers"

6.5.1.1 Non-Blocking IO Muxer
WebLogic Server provides a non-blocking IO muxer implementation as the default
muxer configuration. In the default configuration, MuxerClass is set to
weblogic.socket.NIOSocketMuxer.

6.5.1.2 Other Muxers
Native Muxers and the Java Muxer are not recommended for most environments. If
you must enable these muxers, the value of the MuxerClass attribute must be explicitly
set:

■ Solaris/HP-UX Native Muxer: weblogic.socket.DevPollSocketMuxer

■ POSIX Native Muxer: weblogic.socket.PosixSocketMuxer

■ Windows Native Muxer: weblogic.socket.NTSocketMuxer

■ Java Muxer: weblogic.socket.JavaSocketMuxer

For example, switching to the native NT Socket Muxer on Windows platforms may
improve performance for larger messages/payloads when there is one socket
connection to the WebLogic Server instance.

-Dweblogic.MuxerClass=weblogic.socket.NTSocketMux

The POSIX Native Muxer provides similar performance improvements for larger
messages/payloads in UNIX-like systems that support poll system calls, such as
Solaris and HP-UX:

-Dweblogic.MuxerClass=weblogic.socket.PosixSocketMuxer

Tuning Network I/O

Tuning WebLogic Server 6-7

6.5.1.2.1 Native Muxers Native muxers use platform-specific native binaries to read
data from sockets. The majority of all platforms provide some mechanism to poll a
socket for data. For example, Unix systems use the poll system call and the Windows
architecture uses completion ports. Native muxers provide superior scalability because
they implement a non-blocking thread model. When a native muxer is used, the server
creates a fixed number of threads dedicated to reading incoming requests.

With native muxers, you may be able to improve throughput for some CPU-bound
applications (for example, SpecJAppServer) by using the following:

-Dweblogic.socket.SocketMuxer.DELAY_POLL_WAKEUP=xx

where xx is the amount of time, in microseconds, to delay before checking if data is
available. The default value is 0, which corresponds to no delay.

6.5.1.2.2 Java Muxer A Java muxer has the following characteristics:

■ Uses pure Java to read data from sockets.

■ It is also the only muxer available for RMI clients.

■ Blocks on reads until there is data to be read from a socket. This behavior does not
scale well when there are a large number of sockets and/or when data arrives
infrequently at sockets. This is typically not an issue for clients, but it can create a
huge bottleneck for a server.

These characteristics may be acceptable if there are a small number of clients and the
rate at which requests arrive at the server is fairly high. Under these conditions, the
Java muxer performs as well as a native muxer and eliminates Java Native Interface
(JNI) overhead. Unlike native muxers, the number of threads used to read requests is
not fixed and is tunable for Java muxers by configuring the Percent Socket Readers
parameter setting in the WebLogic Server Administration Console. Ideally, you should
configure this parameter so the number of threads roughly equals the number of
remote concurrently connected clients up to 50 percent of the total thread pool size.
Each thread waits for a fixed amount of time for data to become available at a socket. If
no data arrives, the thread moves to the next socket.

6.5.2 Network Channels
Network channels, also called network access points, allow you to specify different
quality of service (QOS) parameters for network communication. Each network
channel is associated with its own exclusive socket using a unique IP address and port.
By default, T3 requests from a multi-threaded client are multiplexed over the same
remote connection and the server instance reads requests from the socket one at a time.
If the request size is large, this becomes a bottleneck.

Although the primary role of a network channel is to control the network traffic for a
server instance, you can leverage the ability to create multiple custom channels to
allow a multi-threaded client to communicate with server instance over multiple
connections, reducing the potential for a bottleneck. To configure custom
multi-channel communication, use the following steps:

1. Configure multiple network channels using different IP and port settings. See
"Configure custom network channels" in Oracle WebLogic Server Administration
Console Online Help.

2. In your client-side code, use a JNDI URL pattern similar to the pattern used in
clustered environments. The following is an example for a client using two
network channels:

Tuning Network I/O

6-8 Tuning Performance of Oracle WebLogic Server

t3://<ip1>:<port1>,<ip2>:<port2>

See "Understanding Network Channels" in Administering Server Environments for Oracle
WebLogic Server.

6.5.3 Reducing the Potential for Denial of Service Attacks
To reduce the potential for Denial of Service (DoS) attacks while simultaneously
optimizing system availability, WebLogic Server allows you to specify the following
settings:

■ Maximum incoming message size

■ Complete message timeout

■ Number of file descriptors (UNIX systems)

For optimal system performance, each of these settings should be appropriate for the
particular system that hosts WebLogic Server and should be in balance with each
other, as explained in the sections that follow.

6.5.3.1 Tuning Message Size
WebLogic Server allows you to specify a maximum incoming request size to prevent
server from being bombarded by a series of large requests. You can set a global value
or set specific values for different protocols and network channels. Although it does
not directly impact performance, JMS applications that aggregate messages before
sending to a destination may be refused if the aggregated size is greater than specified
value. See "Servers: Protocols: General" in Oracle WebLogic Server Administration Console
Online Help and Section 13.15, "Tuning Applications Using Unit-of-Order".

6.5.3.2 Tuning Complete Message Timeout
Make sure that the complete message timeout parameter is configured properly for
your system. This parameter sets the maximum number of seconds that a server waits
for a complete message to be received.

The default value is 60 seconds, which applies to all connection protocols for the
default network channel. This setting might be appropriate if the server has a number
of high-latency clients. However, you should tune this to the smallest possible value
without compromising system availability.

If you need a complete message timeout setting for a specific protocol, you can
alternatively configure a new network channel for that protocol.

For information about displaying the WebLogic Server Administration Console page
from which the complete message timeout parameter can be set, see "Configure
protocols" in the Oracle WebLogic Server Administration Console Online Help.

6.5.3.3 Tuning Number of File Descriptors
On UNIX systems, each socket connection to WebLogic Server consumes a file
descriptor. To optimize availability, the number of file descriptors for WebLogic Server
should be appropriate for the host machine. By default, WebLogic Server configures
1024 file descriptors. However, this setting may be low, particularly for production
systems.

Note that when you tune the number of file descriptors for WebLogic Server, your
changes should be in balance with any changes made to the complete message timeout
parameter. A higher complete message timeout setting results in a socket not closing
until the message timeout occurs, which therefore results in a longer hold on the file

Multitenancy Tuning Recommendations

Tuning WebLogic Server 6-9

descriptor. So if the complete message timeout setting is high, the file descriptor limit
should also be set high. This balance provides optimal system availability with
reduced potential for denial-of-service attacks.

For information about how to tune the number of available file descriptors, consult
your UNIX vendor’s documentation.

6.5.4 Tuning Connection Backlog Buffering
You can tune the number of connection requests that a WebLogic Server instance will
accept before refusing additional requests. The Accept Backlog parameter specifies
how many Transmission Control Protocol (TCP) connections can be buffered in a wait
queue. This fixed-size queue is populated with requests for connections that the TCP
stack has received, but the application has not accepted yet.

You can tune the number of connection requests that a WebLogic Server instance will
accept before refusing additional requests, see "Tune connection backlog buffering" in
Oracle WebLogic Server Administration Console Online Help.

6.5.5 Tuning Cached Connections
Use the http.keepAliveCache.socketHealthCheckTimeout system property for
tuning the behavior of how a socket connection is returned from the cache when
keep-alive is enabled when using HTTP 1.1 protocol. By default, the cache does not
check the health condition before returning the cached connection to the client for use.
Under some conditions, such as due to an unstable network connection, the system
needs to check the connection's health condition before returning it to the client. To
enable this behavior (checking the health condition), set
http.keepAliveCache.socketHealthCheckTimeout to a value greater than 0.

6.6 Multitenancy Tuning Recommendations
If you are running multiple partitions under heavy load on a system with a large
number of cores, you might need to modify some of the WLS thread pool settings to
improve CPU utilization. Tuning the thread pools can result in increased throughput,
reduced response times, and better CPU utilization.

The following guidelines should be considered a starting point. You will likely need to
experiment with different values to find optimal settings for your specific work load.

■ Muxer Threads (Socket Readers)

Muxer threads are responsible for handling incoming network requests and
dispatching them to appropriate work threads. For the native muxer (typically the
default muxer), WLS uses a fairly low number of muxer threads (4) but this value
might not be sufficient to keep up with the throughput capacity of a high core
count system.

To increase the number of muxer threads on a WLS server you can:

– Set it using ServerMBean.setSocketReaders(N), or

– Set it by passing the following JAVA_OPTION on server startup:
-Dweblogic.SocketReaders=N

To confirm the number of socket readers, look for the log message: Allocating N
reader threads at server startup.

For a starting point, try setting the number of muxer threads to be roughly 20% of
the number of system hardware threads.

Optimize Java Expressions

6-10 Tuning Performance of Oracle WebLogic Server

■ Thread Pool

The thread pool is responsible for allocating threads to do the work in WLS after
requests have been dispatched by the muxer threads. By default WLS uses a self
tuning pool that generally works well for a variety of work loads but under
constant, heavy load, it can sometimes be more efficient to tune the thread pool
size to better match the core count of the server.

To modify the thread pool settings on a WLS server you can:

– Set it using ServerMBean.setSelfTuningThreadPoolSizeMin(N) and
setSelfTuningThreadPoolSizeMax(N), or

– Set it by passing the following JAVA_OPTIONs on server startup:
-Dweblogic.threadpool.MinPoolSize=N
-Dweblogic.threadpool.MaxPoolSize=N

For a starting point, try setting the thread pool min and max size to be roughly
80% of the number of system hardware threads.

To improve performance when Resource Consumption Management (RCM) is
enabled with a varying number of partitions, WLS has introduced a system
property, weblogic.work.rcm.perPartitionPoolSize, for tuning the per partition
pool size.

When RCM is enabled, the WLS self-tuning thread pool will try to use threads that
have previously executed work requests for a partition to perform the next work
request for that same partition. WLS maintains a cache of threads for each
partition. The default size of this cache is 16 threads. You can configure the cache
size using the weblogic.work.rcm.perPartitionPoolSize system property. When
specified, its value should be between 1 and 256, and will be rounded up to the
next power of 2. A smaller value reduces memory usage while a larger value
increases the chance of finding a cached thread from the same partition for
executing the work request.

For additional resource sharing topics, see "Configuring Resource Consumption
Management" in Using WebLogic Server MT.

6.7 Optimize Java Expressions
Set the optimize-java-expression element to optimize Java expressions to improve
runtime performance. See jsp-descriptor in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server.

6.8 Using WebLogic Server Clusters to Improve Performance
A WebLogic Server cluster is a group of WebLogic Servers instances that together
provide fail-over and replicated services to support scalable high-availability
operations for clients within a domain. A cluster appears to its clients as a single server
but is in fact a group of servers acting as one to provide increased scalability and
reliability.

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic
Server instances. Clustered WebLogic Server instances within a domain behave
similarly to non-clustered instances, except that they provide failover and load
balancing. The Administration Server for the domain manages all the configuration
parameters for the clustered and non-clustered instances.

For more information about clusters, see "Understanding WebLogic Server Clustering"
in Administering Clusters for Oracle WebLogic Server.

Using WebLogic Server Clusters to Improve Performance

Tuning WebLogic Server 6-11

6.8.1 Scalability and High Availability
Scalability is the ability of a system to grow in one or more dimensions as more
resources are added to the system. Typically, these dimensions include (among other
things), the number of concurrent users that can be supported and the number of
transactions that can be processed in a given unit of time.

Given a well-designed application, it is entirely possible to increase performance by
simply adding more resources. To increase the load handling capabilities of WebLogic
Server, add another WebLogic Server instance to your cluster—without changing your
application. Clusters provide two key benefits that are not provided by a single server:
scalability and availability.

WebLogic Server clusters bring scalability and high-availability to Java EE applications
in a way that is transparent to application developers. Scalability expands the capacity
of the middle tier beyond that of a single WebLogic Server or a single computer. The
only limitation on cluster membership is that all WebLogic Servers must be able to
communicate by IP multicast. New WebLogic Servers can be added to a cluster
dynamically to increase capacity.

A WebLogic Server cluster guarantees high-availability by using the redundancy of
multiple servers to insulate clients from failures. The same service can be provided on
multiple servers in a cluster. If one server fails, another can take over. The ability to
have a functioning server take over from a failed server increases the availability of the
application to clients.

Clustering in the Messaging Service is provided through distributed destinations;
connection concentrators, and connection load-balancing (determined by connection
factory targeting); and clustered Store-and-Forward (SAF). Client load-balancing with
respect to distributed destinations is tunable on connection factories. Distributed
destination Message Driven Beans (MDBs) that are targeted to the same cluster that
hosts the distributed destination automatically deploy only on cluster servers that host
the distributed destination members and only process messages from their local
destination. Distributed queue MDBs that are targeted to a different server or cluster
than the host of the distributed destination automatically create consumers for every
distributed destination member. For example, each running MDB has a consumer for
each distributed destination queue member.

6.8.2 How to Ensure Scalability for WebLogic Clusters
In general, any operation that requires communication between the servers in a cluster
is a potential scalability hindrance. The following sections provide information on
issues that impact the ability to linearly scale clustered WebLogic servers:

■ Section 6.8.2.1, "Database Bottlenecks"

■ Section 6.8.2.2, "Session Replication"

■ Section 6.8.2.3, "Asynchronous HTTP Session Replication"

■ Section 6.8.2.4, "Invalidation of Entity EJBs"

Note: Provided that you have resolved all application and
environment bottleneck issues, adding additional servers to a cluster
should provide linear scalability. When doing benchmark or initial
configuration test runs, isolate issues in a single server environment
before moving to a clustered environment.

Using WebLogic Server Clusters to Improve Performance

6-12 Tuning Performance of Oracle WebLogic Server

■ Section 6.8.2.5, "Invalidation of HTTP sessions"

■ Section 6.8.2.6, "JNDI Binding, Unbinding and Rebinding"

6.8.2.1 Database Bottlenecks
In many cases where a cluster of WebLogic servers fails to scale, the database is the
bottleneck. In such situations, the only solutions are to tune the database or reduce
load on the database by exploring other options. See Chapter 8, "DataBase Tuning" and
Chapter 11, "Tuning Data Sources".

6.8.2.2 Session Replication
User session data can be stored in two standard ways in a Java EE application: stateful
session EJBs or HTTP sessions. By themselves, they are rarely a impact cluster
scalability. However, when coupled with a session replication mechanism required to
provide high-availability, bottlenecks are introduced. If a Java EE application has Web
and EJB components, you should store user session data in HTTP sessions:

■ HTTP session management provides more options for handling fail-over, such as
replication, a shared DB or file.

■ Superior scalability.

■ Replication of the HTTP session state occurs outside of any transactions. Stateful
session bean replication occurs in a transaction which is more resource intensive.

■ The HTTP session replication mechanism is more sophisticated and provides
optimizations a wider variety of situations than stateful session bean replication.

See Section 17.2, "Session Management".

6.8.2.3 Asynchronous HTTP Session Replication
Asynchronous replication of http sessions provides the option of choosing
asynchronous session replication using:

■ Section 6.8.2.3.1, "Asynchronous HTTP Session Replication using a Secondary
Server"

■ Section 6.8.2.3.2, "Asynchronous HTTP Session Replication using a Database"

6.8.2.3.1 Asynchronous HTTP Session Replication using a Secondary Server Set the
PersistentStoreType to async-replicated or async-replicated-if-clustered to specify
asynchronous replication of data between a primary server and a secondary server.
See session-descriptor section of Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server. To tune batched replication, adjust the SessionFlushThreshold
parameter.

Replication behavior depends on cluster type. The following table describes how
asynchronous replication occurs for a given cluster topology.

Table 6–3 Asynchronous Replication Behavior by Cluster Topology

Topology Behavior

LAN Replication to a secondary server within the same cluster occurs
asynchronously with the "async-replication" setting in the
webapp.

MAN Replication to a secondary server in a remote cluster. This
happens asynchronously with the "async-replication" setting in
the webapp.

Using WebLogic Server Clusters to Improve Performance

Tuning WebLogic Server 6-13

The following section outlines asynchronous replication session behavior:

■ During undeployment or redeployment:

– The session is unregistered and removed from the update queue.

– The session on the secondary server is unregistered.

■ If the application is moved to admin mode, the sessions are flushed and replicated
to the secondary server. If secondary server is down, the system attempts to
failover to another server.

■ A server shutdown or failure state triggers the replication of any batched sessions
to minimize the potential loss of session information.

6.8.2.3.2 Asynchronous HTTP Session Replication using a Database Set the
PersistentStoreType to async-jdbc to specify asynchronous replication of data to a
database. See session-descriptor section of Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server. To tune batched replication, adjust the
SessionFlushThreshold and the SessionFlushInterval parameters.

The following section outlines asynchronous replication session behavior:

■ During undeployment or redeployment:

– The session is unregistered and removed from the update queue.

– The session is removed from the database.

■ If the application is moved to admin mode, the sessions are flushed and replicated
to the database.

6.8.2.4 Invalidation of Entity EJBs
This applies to entity EJBs that use a concurrency strategy of Optimistic or ReadOnly
with a read-write pattern.

Optimistic—When an Optimistic concurrency bean is updated, the EJB container
sends a multicast message to other cluster members to invalidate their local copies of
the bean. This is done to avoid optimistic concurrency exceptions being thrown by the
other servers and hence the need to retry transactions. If updates to the EJBs are
frequent, the work done by the servers to invalidate each other's local caches become a
serious bottleneck. A flag called cluster-invalidation-disabled (default false) is
used to turn off such invalidations. This is set in the rdbms descriptor file.

ReadOnly with a read-write pattern—In this pattern, persistent data that would
otherwise be represented by a single EJB are actually represented by two EJBs: one
read-only and the other updatable. When the state of the updateable bean changes, the
container automatically invalidates corresponding read-only EJB instance. If updates
to the EJBs are frequent, the work done by the servers to invalidate the read-only EJBs
becomes a serious bottleneck.

WAN Replication to a secondary server within the cluster happens
asynchronously with the "async-replication" setting in the
webapp. Persistence to a database through a remote cluster
happens asynchronously regardless of whether
"async-replication" or "replication" is chosen.

Table 6–3 (Cont.) Asynchronous Replication Behavior by Cluster Topology

Topology Behavior

Monitoring a WebLogic Server Domain

6-14 Tuning Performance of Oracle WebLogic Server

6.8.2.5 Invalidation of HTTP sessions
Similar to Section 6.8.2.4, "Invalidation of Entity EJBs", HTTP sessions can also be
invalidated. This is not as expensive as entity EJB invalidation, since only the session
data stored in the secondary server needs to be invalidated. HTTP sessions should be
invalidated if they are no longer in use.

6.8.2.6 JNDI Binding, Unbinding and Rebinding
In general, JNDI binds, unbinds and rebinds are expensive operations. However, these
operations become a bigger bottleneck in clustered environments because JNDI tree
changes have to be propagated to all members of a cluster. If such operations are
performed too frequently, they can reduce cluster scalability significantly.

6.8.3 Running Multiple Server Instances on Multi-Core Machines
With multi-core machines, additional consideration must be given to the ratio of the
number of available cores to clustered WebLogic Server instances. Because WebLogic
Server has no built-in limit to the number of server instances that reside in a cluster,
large, multi-core servers, can potentially host very large clusters or multiple clusters.

Consider the following when determining the optimal ratio of cores to WebLogic
Server instances:

■ The memory requirements of the application. Choose the heap sizes of an
individual instance and the total number of instances to ensure that you're
providing sufficient memory for the application and achieving good GC
performance. For some applications, allocating very large heaps to a single
instance may lead to longer GC pause times. In this case, the performance may
benefit from increasing the number of instances and giving each instance a smaller
heap.

■ Maximizing CPU utilization. While WebLogic Server is capable of utilizing
multiple cores per instance, for some applications, increasing the number of
instances on a given machine (reducing the number of cores per instance) can
improve CPU utilization and overall performance.

6.8.4 Improving Cluster Throughput using XA Transaction Cluster Affinity
XA transaction cluster affinity allows server instances that are participating in a global
transactions to service related requests rather than load-balancing these requests to
other member servers. When Enable Transaction Affinity=true, cluster throughput
is increased by:

■ Reducing inter-server transaction coordination traffic

■ Improving resource utilization, such as reducing JDBC connections

■ Simplifying asynchronous processing of transactions

See "Configure clusters" in Oracle WebLogic Server Administration Console Online Help
and "XA Transaction Affinity" in Administering Clusters for Oracle WebLogic Server.

6.9 Monitoring a WebLogic Server Domain
The following sections provide information on how to monitor WebLogic Server
domains:

■ Section 6.9.1, "Using the Administration Console to Monitor WebLogic Server"

■ Section 6.9.2, "Using the WebLogic Diagnostic Framework"

Tuning Class and Resource Loading

Tuning WebLogic Server 6-15

■ Section 6.9.3, "Using JMX to Monitor WebLogic Server"

■ Section 6.9.4, "Using WLST to Monitor WebLogic Server"

6.9.1 Using the Administration Console to Monitor WebLogic Server
The tool for monitoring the health and performance of your WebLogic Server domain
is the Administration Console. See "Monitor servers" in Oracle WebLogic Server
Administration Console Online Help.

6.9.2 Using the WebLogic Diagnostic Framework
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that defines and implements a set of services that run within WebLogic
Server processes and participate in the standard server life cycle. See "Overview of the
WLDF Architecture" in Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

6.9.3 Using JMX to Monitor WebLogic Server
WebLogic Server provides its own set of MBeans that you can use to configure,
monitor, and manage WebLogic Server resources. See "Understanding WebLogic
Server MBeans" in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

6.9.4 Using WLST to Monitor WebLogic Server
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances
and domains. See "Understanding WebLogic Server MBeans" in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

6.9.5 Resources to Monitor WebLogic Server
The Oracle Technology Network at http://www.oracle.com/technology/index.html
provides product downloads, articles, sample code, product documentation, tutorials,
white papers, news groups, and other key content for WebLogic Server.

6.10 Tuning Class and Resource Loading
The default class and resource loading default behavior in WebLogic Server is to
search the classloader hierarchy beginning with the root. As a result, the full system
classpath is searched for every class or resource loading request, even if the class or
resource belongs to the application. For classes and resources that are only looked up
once (for example: classloading during deployment), the cost of the full classpath
search is typically not a serious problem. For classes and resources that are requested
repeatedly by an application at runtime (explicit application calls to loadClass or
getResource) the CPU and memory overhead of repeatedly searching a long system
and application classpath can be significant. The worst case scenario is when the
requested class or resource is missing. A missing class or resource results in the cost of
a full scan of the classpath and is compounded by the fact that if an application fails
to find the class/resource it is likely to request it repeatedly. This problem is more
common for resources than for classes.

Ideally, application code is optimized to avoid requests for missing classes and
resources and frequent repeated calls to load the same class/resource. While it is not

Tuning Class and Resource Loading

6-16 Tuning Performance of Oracle WebLogic Server

always possible to fix the application code (for example, a third party library), an
alternative is to use WebLogic Server's "Filtering Loader Mechanism".

6.10.1 Filtering Loader Mechanism
WebLogic Server provides a filtering loader mechanism that allows the system
classpath search to be bypassed when looking for specific application classes and
resources that are on the application classpath. This mechanism requires a user
configuration that specifies the specific classes and resources that bypass the system
classpath search. See "Using a Filtering Classloader" in Developing Applications for
Oracle WebLogic Server.

New for this release is the ability to filter resource loading requests. The basic
configuration of resource filtering is specified in
META-INF/weblogic-application.xml file and is similar to the class filtering. The the
syntax for filtering resources is shown in the following example:

<prefer-application-resources>
<resource-name>x/y</resource-name>
<resource-name>z*</resource-name>
</prefer-application-resources>

In this example, resource filtering has been configured for the exact resource name
"x/y" and for any resource whose name starts with "z". '*' is the only wild card pattern
allowed. Resources with names matching these patterns are searched for only on the
application classpath, the system classpath search is skipped.

6.10.2 Class Caching
WebLogic Server allows you to enable class caching for faster start ups. Once you
enable caching, the server records all the classes loaded until a specific criterion is
reached and persists the class definitions in an invisible file. When the server restarts,
the cache is checked for validity with the existing code sources and the server uses the
cache file to bulk load the same sequence of classes recorded in the previous run. If
any change is made to the system classpath or its contents, the cache will be
invalidated and re-built on server restart.

The advantages of using class caching are:

■ Reduces server startup time.

■ The package level index reduces search time for all classes and resources.

For more information, see Configuring Class Caching in Developing Applications for
Oracle WebLogic Server.

Note: If you add a class or resource to the filtering configuration and
subsequently get exceptions indicating the class or resource isn't
found, the most likely cause is that the class or resource is on the
system classpath, not on the application classpath.

Note: Class caching is supported in development mode when
starting the server using a startWebLogic script. Class caching is
disabled by default and is not supported in production mode. The
decrease in startup time varies among different JRE vendors.

SSL Considerations

Tuning WebLogic Server 6-17

6.11 SSL Considerations
If WebLogic Server is configured with JDK 7, you may find that the out-of-the-box SSL
performance slower than in previous WebLogic Server releases. This performance
change is due to the stronger cipher and MAC algorithm used by default when JDK 7
is used with the JSSE-based SSL provider in WebLogic Server. See "SSL Performance
Considerations" in Administering Security for Oracle WebLogic Server 12c (12.2.1).

SSL Considerations

6-18 Tuning Performance of Oracle WebLogic Server

7

Tuning the WebLogic Persistent Store 7-1

7Tuning the WebLogic Persistent Store

[8] This chapter describes how to tune the persistent store, which provides a built-in,
high-performance storage solution for WebLogic Server subsystems and services that
require persistence.

This chapter includes the following sections:

■ Section 7.1, "Overview of Persistent Stores"

■ Section 7.2, "Best Practices When Using Persistent Stores"

■ Section 7.3, "Tuning JDBC Stores"

■ Section 7.4, "Tuning File Stores"

■ Section 7.5, "Using a Network File System"

Before reading this chapter, Oracle recommends becoming familiar with WebLogic
store administration and monitoring. See "Using the WebLogic Persistent Store" in
Administering the WebLogic Persistent Store.

7.1 Overview of Persistent Stores
The following sections provide information on using persistent stores.

■ Section 7.1.1, "Using the Default Persistent Store"

■ Section 7.1.2, "Using Custom File Stores and JDBC Stores"

■ Section 7.1.3, "Using a JDBC TLOG Store"

■ Section 7.1.4, "Using JMS Paging Stores"

■ Section 7.1.5, "Using Diagnostic Stores"

7.1.1 Using the Default Persistent Store
Each server instance, including the administration server, has a default persistent store
that requires no configuration. The default store is a file-based store that maintains its
data in a group of files in a server instance's data\store\default directory. A
directory for the default store is automatically created if one does not already exist.
This default store is available to subsystems that do not require explicit selection of a
particular store and function best by using the system's default storage mechanism.
For example, a JMS Server with no persistent store configured will use the default
store for its Managed Server and will support persistent messaging. See:

■ Using the WebLogic Persistent Store in Administering the WebLogic Persistent Store.

Overview of Persistent Stores

7-2 Tuning Performance of Oracle WebLogic Server

■ Modify the Default Store Settings in Oracle WebLogic Server Administration Console
Online Help.

7.1.2 Using Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC
store to suit your specific needs. A custom file store, like the default file store,
maintains its data in a group of files in a directory. However, you may want to create a
custom file store so that the file store's data is persisted to a particular storage device.
When configuring a file store directory, the directory must be accessible to the server
instance on which the file store is located.

A JDBC store can be configured when a relational database is used for storage. A JDBC
store enables you to store persistent messages in a standard JDBC-capable database,
which is accessed through a designated JDBC data source. The data is stored in the
JDBC store's database table, which has a logical name of WLStore. It is up to the
database administrator to configure the database for high availability and
performance. See:

■ When to Use a Custom Persistent Store in Administering the WebLogic Persistent
Store.

■ Comparing File Stores and JDBC Stores in Administering the WebLogic Persistent
Store.

■ Creating a Custom (User-Defined) File Store in Administering the WebLogic
Persistent Store.

■ Creating a JDBC Store in Administering the WebLogic Persistent Store.

7.1.3 Using a JDBC TLOG Store
You can configure a JDBC TLOG store to persist transaction logs to a database, which
allows you to leverage replication and HA characteristics of the underlying database,
simplify disaster recovery, and improve Transaction Recovery service migration. See
"Using a JDBC TLog Store" in Administering the WebLogic Persistent Store.

7.1.4 Using JMS Paging Stores
Each JMS server implicitly creates a file based paging store. When the WebLogic
Server JVM runs low on memory, this store is used to page non-persistent messages as
well as persistent messages. Depending on the application, paging stores may generate
heavy disk activity.

You can optionally change the directory location and the threshold settings at which
paging begins. You can improve performance by locating paging store directories on a
local file system, preferably in a temporary directory. Paging store files do not need to
be backed up, replicated, or located in universally accessible location as they are
automatically repopulated each time a JMS server restarts. See JMS Server Behavior in
WebLogic Server 9.x and Later in Administering JMS Resources for Oracle WebLogic
Server.

Note: Paged persistent messages are potentially physical stored in
two different places:

■ Always in a recoverable default or custom store.

■ Potentially in a paging directory.

Best Practices When Using Persistent Stores

Tuning the WebLogic Persistent Store 7-3

7.1.4.1 Using Flash Storage to Page JMS Messages
You can often improve paging performance for JMS messages (persistent or
non-persistent) by configuring JMS server paging directories to reference a directory
on a locally mounted enterprise-class flash storage device. This can be significantly
faster than other technologies

Use the following steps to use a Flash storage device to page JMS messages:

1. Set the JMS server Message Paging Directory attribute to the path of your flash
storage device, see Section 13.12.1, "Specifying a Message Paging Directory."

2. Tune the Message Buffer Size attribute (it controls when paging becomes active).
You may be able to use lower threshold values as faster I/O operations provide
improved load absorption. See Section 13.12.2, "Tuning the Message Buffer Size
Option."

3. Tune JMS Server quotas to safely account for any Flash storage space limitations.
This ensures that your JMS server(s) will not attempt to page more messages than
the device can store, potentially yielding runtime errors and/or automatic
shutdowns. As a conservative rule of thumb, assume page file usage will be at
least 1.5 * ((Maximum Number of Active Messages) * (512 + average message body
size)) rounded up to the nearest 16MB. See Section 13.7, "Defining Quota."

7.1.5 Using Diagnostic Stores
The Diagnostics store is a file store that implicitly always uses the Disabled
synchronous write policy. It is dedicated to storing WebLogic server diagnostics
information. One diagnostic store is configured per WebLogic Server instance. See
"Configuring Diagnostic Archives" in Configuring and Using the Diagnostics Framework
for Oracle WebLogic Server.

7.2 Best Practices When Using Persistent Stores
■ For subsystems that share the same server instance, share one store between

multiple subsystems rather than using a store per subsystem. Sharing a store is
more efficient for the following reasons:

– A single store batches concurrent requests into single I/Os which reduces
overall disk usage.

– Transactions in which only one resource participates are lightweight
one-phase transactions. Conversely, transactions in which multiple stores
participate become heavier weight two-phase transactions.

For example, configure all SAF agents and JMS servers that run on the same server
instance so that they share the same store.

Note: Most Flash storage devices are a single point of failure and are
typically only accessible as a local device. They are suitable for JMS
server paging stores which do not recover data after a failure and
automatically reconstruct themselves as needed.

In most cases, Flash storage devices are not suitable for custom or
default stores which typically contains data that must be safely
recoverable. A configured Directory attribute of a default or custom
store should not normally reference a directory that is on a single
point of failure device.

Tuning JDBC Stores

7-4 Tuning Performance of Oracle WebLogic Server

■ Add a new store only when the old store(s) no longer scale.

7.3 Tuning JDBC Stores
The following section provides information on tuning JDBC Stores:

■ Under heavy JDBC store I/O loads, you can improve performance by configuring
a JDBC store to use multiple JDBC connections to concurrently process I/O
operations. See "Enabling I/O Multithreading for JDBC Stores" in Administering the
WebLogic Persistent Store.

■ When using Oracle BLOBS, you may be able to improve performance by tuning
the ThreeStepThreshold value. See "Enabling Oracle BLOB Record Columns" in
Administering the WebLogic Persistent Store.

■ The location of the JDBC store DDL that is used to initialize empty stores is now
configurable. This simplifies the use of custom DDL for database table creation,
which is sometimes used for database specific performance tuning. For
information, see "Create JDBC stores" in Oracle WebLogic Server Administration
Console Online Help and "Using the WebLogic Persistent Store" in Administering the
WebLogic Persistent Store.

7.4 Tuning File Stores
The following section provides information on tuning File Stores:

■ Section 7.4.1, "Basic Tuning Information"

■ Section 7.4.2, "Tuning a File Store Direct-Write-With-Cache Policy"

■ Section 7.4.3, "Tuning the File Store Direct-Write Policy"

■ Section 7.4.4, "Tuning the File Store Block Size"

7.4.1 Basic Tuning Information
The following section provides general information on tuning File Stores:

■ For basic (non-RAID) disk hardware, consider dedicating one disk per file store. A
store can operate up to four to five times faster if it does not have to compete with
any other store on the disk. Remember to consider the existence of the default file
store in addition to each configured store and a JMS paging store for each JMS
server.

■ For custom and default file stores, tune the Synchronous Write Policy.

– There are three transactionally safe synchronous write policies:
Direct-Write-With-Cache, Direct-Write, and Cache-Flush.
Direct-Write-With-Cache is generally has the best performance of these
policies, Cache-Flush generally has the lowest performance, and
Direct-Write is the default. Unlike other policies, Direct-Write-With-Cache
creates cache files in addition to primary files.

– The Disabled synchronous write policy is transactionally unsafe. The
Disabled write-policy can dramatically improve performance, especially at
low client loads. However, it is unsafe because writes become asynchronous
and data can be lost in the event of Operating System or power failure.

– See Guidelines for Configuring a Synchronous Write Policy in Administering
the WebLogic Persistent Store.

Tuning File Stores

Tuning the WebLogic Persistent Store 7-5

■ When performing head-to-head vendor comparisons, make sure all the write
policies for the persistent store are equivalent. Some non-WebLogic vendors
default to the equivalent of Disabled.

■ Depending on the synchronous write policy, custom and default stores have a
variety of additional tunable attributes that may improve performance. These
include CacheDirectory, MaxWindowBufferSize, IOBufferSize, BlockSize,
InitialSize, and MaxFileSize. For more information see the JMSFileStoreMBean
in the MBean Reference for Oracle WebLogic Server.

■ If disk performance continues to be a bottleneck, consider purchasing disk or
RAID controller hardware that has a built-in write-back cache. These caches
significantly improve performance by temporarily storing persistent data in
volatile memory. To ensure transactionally safe write-back caches, they must be
protected against power outages, host machine failure, and operating system
failure. Typically, such protection is provided by a battery-backed write-back
cache.

7.4.2 Tuning a File Store Direct-Write-With-Cache Policy
The Direct-Write-With-Cache synchronous write policy is commonly the highest
performance option that still provides transactionally safe disk writes. It is typically
not as high-performing as the Disabled synchronous write policy, but the Disabled
policy is not a safe option for production systems unless you have some means to
prevent loss of buffered writes during a system failure.

Direct-Write-With-Cache file stores write synchronously to a primary set of files in
the location defined by the Directory attribute of the file store configuration. They
also asynchronously write to a corresponding temporary cache file in the location
defined by the CacheDirectory attribute of the file store configuration. The cache
directory and the primary file serve different purposes and require different locations.
In many cases, primary files should be stored in remote storage for high availability,
whereas cache files are strictly for performance and not for high availability and can be
stored locally.

Note: Certain older versions of Microsoft Windows may incorrectly
report storage device synchronous write completion if the Windows
default Write Cache Enabled setting is used. This violates the
transactional semantics of transactional products (not specific to
Oracle), including file stores configured with a Direct-Write (default)
or Direct-Write-With-Cache policy, as a system crash or power
failure can lead to a loss or a duplication of records/messages. One of
the visible symptoms is that this problem may manifest itself in high
persistent message/transaction throughput exceeding the physical
capabilities of your storage device. You can address the problem by
applying a Microsoft supplied patch, disabling the Windows Write
Cache Enabled setting, or by using a power-protected storage device.
See http://support.microsoft.com/kb/281672 and
http://support.microsoft.com/kb/332023.

Note: .The JMSFileStoreMBean is deprecated, but the individual
bean attributes apply to the non-deprecated beans for custom and
default file stores.

Tuning File Stores

7-6 Tuning Performance of Oracle WebLogic Server

When the Direct-Write-With-Cache synchronous write policy is selected, there are
several additional tuning options that you should consider:

■ Setting the CacheDirectory. For performance reasons, the cache directory should
be located on a local file system. It is placed in the operating system temp
directory by default.

■ Increasing the MaxWindowBufferSize and IOBufferSize attributes. These tune
native memory usage of the file store.

■ Increasing the InitialSize and MaxFileSize tuning attributes. These tune the
initial size of a store, and the maximum file size of a particular file in the store
respectively.

■ Tune the BlockSize attribute. SeeSection 7.4.4, "Tuning the File Store Block Size."

For more information on individual tuning parameters, see the JMSFileStoreMBean in
the MBean Reference for Oracle WebLogic Server.

7.4.2.1 Using Flash Storage to Increase Performance
You can gain additional I/O performance by using enterprise-class flash drives, which
can be significantly faster than spinning disks for accessing data in real-time
applications and allows you to free up memory for other processing tasks.

Simply update the CacheDirectory attribute with the path to your flash storage device
and ensure that the device contains sufficient free storage to accommodate a full copy
of the store's primary files. See the CacheDirectory attribute in the MBean Reference for
Oracle WebLogic Server.

7.4.2.2 Additional Considerations
Consider the following when tuning the Direct-Write-With-Cache policy:

■ There may be additional security and file locking considerations when using the
Direct-Write-With-Cache synchronous write policy. See Securing a Production
Environment for Oracle WebLogic Server and the CacheDirectory and
LockingEnabled attributes of the JMSFileStoreMBean in the MBean Reference for
Oracle WebLogic Server.

– The JMSFileStoreMBean is deprecated, but the individual bean attributes
apply to the non-deprecated beans for custom and default file stores.

■ It is safe to delete a cache directory while the store is not running, but this may
slow down the next store boot. Cache files are re-used to speed up the file store
boot and recovery process, but only if the store's host WebLogic server has been
shut down cleanly prior to the current boot (not after kill -9, nor after an
OS/JVM crash) and there was no off-line change to the primary files (such as a
store admin compaction). If the existing cache files cannot be safely used at boot
time, they are automatically discarded and new files are created. In addition, a
Warning log 280102 is generated. After a migration or failover event, this same
Warning message is generated, but can be ignored.

■ If the a Direct-Write-With-Cache file store fails to load a wlfileio native driver,
the synchronous write policy automatically changes to the equivalent of
Direct-Write with AvoidDirectIO=true. To view a running custom or default file
store's configured and actual synchronous write policy and driver, examine the
server log for WL-280008 and WL-280009 messages.

■ To prevent unused cache files from consuming disk space, test and development
environments may need to be modified to periodically delete cache files that are

Tuning File Stores

Tuning the WebLogic Persistent Store 7-7

left over from temporarily created domains. In production environments, cache
files are managed automatically by the file store.

7.4.3 Tuning the File Store Direct-Write Policy

For file stores with the synchronous write policy of Direct-Write, you may be
directed by Oracle Support or a release note to set weblogic.Server options on the
command line or start script of the JVM that runs the store:

■ Globally changes all stores running in the JVM:

-Dweblogic.store.AvoidDirectIO=true

■ For a single store, where store-name is the name of the store:

-Dweblogic.store.store-name.AvoidDirectIO=true

■ For the default store, where server-name is the name of the server hosting the
store:

-Dweblogic.store._WLS_server-name.AvoidDirectIO=true

Setting AvoidDirectIO on an individual store overrides the setting of the global
-Dweblogic.store.AvoidDirectIO option. For example: If you have two stores, A and
B, and set the following options:

-Dweblogic.store.AvoidDirectIO=true
-Dweblogic.store.A.AvoidDirectIO=false

then only store B has the setting AvoidDirectIO=true.

7.4.4 Tuning the File Store Block Size
You may want to tune the file store block size for file stores that are configured with a
synchronous write policy of Direct-Write (default), Direct-Write-With-Cache, or
Cache-Flush, especially when using Direct-Write with AvoidDirectIO=true as
described in Section 7.4.3, "Tuning the File Store Direct-Write Policy" or for systems
with a hard-drive-based write-back cache where you see that performance is limited
by physical storage latency.

Consider the following example:

■ A single WebLogic JMS producer sends persistent messages one by one.

■ The network overhead is known to be negligible.

■ The file store's disk drive has a 10,000 RPM rotational rate.

■ The disk drive has a battery-backed write-back cache.

Deprecation Note: The AvoidDirectIO properties described in this
section are still supported in this release, but have been deprecated as
of 11gR1PS2. Use the configurable Direct-Write-With-Cache
synchronous write policy as an alternative to the Direct-Write policy.

Note: Setting the AvoidDirectIO option may have performance
implications which often can be mitigated using the block size setting
described in Section 7.4.4, "Tuning the File Store Block Size."

Tuning File Stores

7-8 Tuning Performance of Oracle WebLogic Server

and the messaging rate is measured at 166 messages per second.

In this example, the low messaging rate matches the disk drive's latency (10,000 RPM
/ 60 seconds = 166 RPS) even though a much higher rate is expected due to the
battery-backed write-back cache. Tuning the store's block size to match the file
systems' block size could result in a significant improvement.

In some other cases, tuning the block size may result in marginal or no improvement:

■ The caches are observed to yield low latency (so the I/O subsystem is not a
significant bottleneck).

■ Write-back caching is not used and performance is limited by larger disk drive
latencies.

There may be a trade off between performance and file space when using higher block
sizes. Multiple application records are packed into a single block only when they are
written concurrently. Consequently, a large block size may cause a significant increase
in store file sizes for applications that have little concurrent server activity and
produce small records. In this case, one small record is stored per block and the
remaining space in each block is unused. As an example, consider a Web Service
Reliable Messaging (WS-RM) application with a single producer that sends small 100
byte length messages, where the application is the only active user of the store.

Oracle recommends tuning the store block size to match the block size of the file
system that hosts the file store (typically 4096 for most file systems) when this yields a
performance improvement. Alternately, tuning the block size to other values (such as
paging and cache units) may yield performance gains. If tuning the block size does not
yield a performance improvement, Oracle recommends leaving the block size at the
default as this helps to minimize use of file system resources.

7.4.4.1 Setting the Block Size for a File Store

To set the block size of a store, use one of the following properties on the command
line or start script of the JVM that runs the store:

■ Globally sets the block size of all file stores that don't have pre-existing files.

-Dweblogic.store.BlockSize=block-size

■ Sets the block size for a specific file store that doesn’t have pre-existing files.

-Dweblogic.store.store-name.BlockSize=block-size

■ Sets the block size for the default file store, if the store doesn’t have pre-existing
files:

-Dweblogic.store._WLS_server-name. BlockSize=block-size

The value used to set the block size is an integer between 512 and 8192 which is
automatically rounded down to the nearest power of 2.

Setting BlockSize on an individual store overrides the setting of the global
-Dweblogic.store.BlockSize option. For example: If you have two stores, A and B,
and set the following options:

Deprecation Note: The BlockSize command line properties that are
described in this section are still supported in 11gR1PS2, but are
deprecated. Oracle recommends using the BlockSize configurable on
custom and default file stores instead.

Using a Network File System

Tuning the WebLogic Persistent Store 7-9

-Dweblogic.store.BlockSize=8192
-Dweblogic.store.A.BlockSize=512

then store B has a block size of 8192 and store A has a block size of 512.

7.4.4.2 Determining the File Store Block Size
You can verify a file store's current block size and synchronous write policy by
viewing the server log of the server that hosts the store. Search for a "280009" store
opened message.

7.4.4.3 Determining the File System Block Size
To determine your file system's actual block size, consult your operating system
documentation. For example:

■ Linux ext2 and ext3 file systems: run /sbin/dumpe2fs /dev/device-name and look
for "Block size"

■ Windows NTFS: run fsutil fsinfo ntfsinfo device letter: and look for
"Bytes Per Cluster"

7.4.4.4 Converting a Store with Pre-existing Files
If the data in a store’s pre-existing files do not need to be preserved, then simply
shutdown the host WebLogic Server instance and delete the files to allow the block
size to change when the store is restarted. If you need to preserve the data, convert a
store with pre-existing files to a different block size by creating a version of the file
store with the new block size using the compact command of the command line store
administration utility:

1. java -Dweblogic.store.BlockSize=block-size weblogic.store.Admin

2. Type help for available commands.

3. Storeadmin->compact -dir file-store-directory

See "Store Administration Using a Java Command-line" in Administering the WebLogic
Persistent Store.

7.5 Using a Network File System
The following sections provide information on using a WebLogic Persistent Store with
a Network File System (NFS):

■ Section 7.5.1, "Configuring Synchronous Write Policies"

■ Section 7.5.2, "Test Server Restart Behavior"

■ Section 7.5.3, "Handling NFS Locking Errors"

7.5.1 Configuring Synchronous Write Policies
NFS storage may not fully protect transactional data, as it may be configured to
silently buffer synchronous write requests in volatile memory. If a file store Directory

Note: Setting the block size using command line properties only
takes effect for file stores that have no pre-existing files. If a store has
pre-existing files, the store continues to use the block size that was set
when the store was first created.

Using a Network File System

7-10 Tuning Performance of Oracle WebLogic Server

is located on an NFS mount, and the file store’s Synchronous Write Policy is anything
other than Disabled, check your NFS implementation and configuration to make sure
that it is configured to support synchronous writes. A Disabled synchronous write
policy does not perform synchronous writes, but, as a consequence, is generally not
transactionally safe. You may detect undesirable buffering of synchronous write
requests by observing high persistent message or transaction throughput that exceeds
the physical capabilities of your storage device. On the NFS server, check the
synchronous write setting of the exported NFS directory hosting your File Store. A
SAN based file store, or a JDBC store, may provide an easier solution for safe
centralized storage.

7.5.2 Test Server Restart Behavior
Oracle strongly recommends verifying the behavior of a server restart after abrupt
machine failures when the JMS messages and transaction logs are stored on an NFS
mounted directory. Depending on the NFS implementation, different issues can arise
after a failover or restart. The behavior can be verified by abruptly shutting down the
node hosting the Web Logic servers while these are running. If the server is configured
for server migration, it should be started automatically in the failover node after the
corresponding failover period. If not, a manual restart of the WebLogic Server on the
same host (after the node has completely rebooted) can be performed.

7.5.3 Handling NFS Locking Errors

If Oracle WebLogic Server does not restart after abrupt machine failure when JMS
messages and transaction logs are stored on NFS mounted directory, the following
errors may appear in the server log files:

Example 7–1 Store Restart Failure Error Message

MMM dd, yyyy hh:mm:ss a z> <Error> <Store> <BEA-280061> <The persistent store "_
WLS_server_soa1" could not be deployed:
weblogic.store.PersistentStoreException: java.io.IOException:
[Store:280021]There was an error while opening the file store file "_WLS_SERVER_
SOA1000000.DAT"
at weblogic.store.io.file.Heap.open(Heap.java:168)
at weblogic.store.io.file.FileStoreIO.open(FileStoreIO.java:88)
...
java.io.IOException: Error from fcntl() for file locking, Resource temporarily
unavailable, errno=11

This error is due to the NFS system not releasing the lock on the stores. WebLogic
Server maintains locks on files used for storing JMS data and transaction logs to
protect from potential data corruption if two instances of the same WebLogic Server
are accidentally started. The NFS storage device does not become aware of machine
failure in a timely manner and the locks are not released by the storage device. As a
result, after abrupt machine failure, followed by a restart, any subsequent attempt by
WebLogic Server to acquire locks on the previously locked files may fail. Refer to your

Note: You can configure a NFS v4 based Network Attached Storage
(NAS) server to release locks within the approximate time required to
complete server migration. If you tune and test your NFS v4
environment, you do not need to follow the procedures in this section.
See your storage vendor's documentation for information on locking
files stored in NFS-mounted directories on the storage device.

Using a Network File System

Tuning the WebLogic Persistent Store 7-11

storage vendor documentation for additional information on the locking of files stored
in NFS mounted directories on the storage device. If it is not reasonably possible to
tune locking behavior in your NFS environment, use one of the following two
solutions to unlock the logs and data files.

Use one of the following two solutions to unlock the logs and data files:

■ Section 7.5.3.1, "Solution 1 - Copying Data Files to Remove NFS Locks"

■ Section 7.5.3.2, "Solution 2 - Disabling File Locks in WebLogic Server File Stores"

7.5.3.1 Solution 1 - Copying Data Files to Remove NFS Locks
Manually unlock the logs and JMS data files and start the servers by creating a copy of
the locked persistence store file and using the copy for subsequent operations. To
create a copy of the locked persistence store file, rename the file, and then copy it back
to its original name. The following sample steps assume that transaction logs are
stored in the /shared/tlogs directory and JMS data is stored in the /shared/jms
directory.

Example 7–2 Sample Steps to Remove NFS Locks

cd /shared/tlogs
mv _WLS_SOA_SERVER1000000.DAT _WLS_SOA_SERVER1000000.DAT.old
cp _WLS_SOA_SERVER1000000.DAT.old _WLS_SOA_SERVER1000000.DAT
cd /shared/jms
mv SOAJMSFILESTORE_AUTO_1000000.DAT SOAJMSFILESTORE_AUTO_1000000.DAT.old
cp SOAJMSFILESTORE_AUTO_1000000.DAT.old SOAJMSFILESTORE_AUTO_1000000.DAT
mv UMSJMSFILESTORE_AUTO_1000000.DAT UMSJMSFILESTORE_AUTO_1000000.DAT.old
cp UMSJMSFILESTORE_AUTO_1000000.DAT.old UMSJMSFILESTORE_AUTO_1000000.DAT

With this solution, the WebLogic file locking mechanism continues to provide
protection from any accidental data corruption if multiple instances of the same
servers were accidently started. However, the servers must be restarted manually after
abrupt machine failures. File stores will create multiple consecutively numbered.DAT
files when they are used to store large amounts of data. All files may need to be copied
and renamed when this occurs.

7.5.3.2 Solution 2 - Disabling File Locks in WebLogic Server File Stores

Note: With this solution, since the WebLogic Server locking is
disabled, automated server restarts and failovers should succeed. Be
very cautious, however, when using this option. The WebLogic file
locking feature is designed to help prevent severe file corruptions that
can occur in undesired concurrency scenarios. If the server using the
file store is configured for server migration, always configure the
database based leasing option. This enforces additional locking
mechanisms using database tables, and prevents automated restart of
more than one instance of the same WebLogic Server. Additional
procedural precautions must be implemented to avoid any human
error and to ensure that one and only one instance of a server is
manually started at any give point in time. Similarly, extra precautions
must be taken to ensure that no two domains have a store with the
same name that references the same directory.

Using a Network File System

7-12 Tuning Performance of Oracle WebLogic Server

You can also use the WebLogic Server Administration Console to disable WebLogic file
locking mechanisms for the default file store, a custom file store, a JMS paging file
store, and a Diagnostics file store, as described in the following sections:

■ Section 7.5.3.2.1, "Disabling File Locking for the Default File Store"

■ Section 7.5.3.2.2, "Disabling File Locking for a Custom File Store"

■ Section 7.5.3.2.3, "Disabling File Locking for a JMS Paging File Store"

■ Section 7.5.3.2.4, "Disabling File Locking for a Diagnostics File Store"

7.5.3.2.1 Disabling File Locking for the Default File Store Follow these steps to disable file
locking for the default file store using the WebLogic Server Administration Console:

1. If necessary, click Lock & Edit in the Change Center (upper left corner) of the
WebLogic Server Administration Console to get an Edit lock for the domain.

2. 2.In the Domain Structure tree, expand the Environment node and select Servers.

3. In the Summary of Servers list, select the server you want to modify.

4. Select the Configuration > Services tab.

5. Scroll down to the Default Store section and click Advanced.

6. Scroll down and deselect the Enable File Locking check box.

7. Click Save to save the changes. If necessary, click Activate Changes in the Change
Center.

8. Restart the server you modified for the changes to take effect.

The resulting config.xml entry looks like:

Example 7–3 Example config.xml Entry for Disabling File Locking for a Default File Store

<server>
<name>examplesServer</name>
...
<default-file-store>
<synchronous-write-policy>Direct-Write</synchronous-write-policy>
<io-buffer-size>-1</io-buffer-size>
<max-file-size>1342177280</max-file-size>
<block-size>-1</block-size>
<initial-size>0</initial-size>
<file-locking-enabled>false</file-locking-enabled>
</default-file-store>
</server>

7.5.3.2.2 Disabling File Locking for a Custom File Store Use the following steps to disable
file locking for a custom file store using the WebLogic Server Administration Console:

1. If necessary, click Lock & Edit in the Change Center (upper left corner) of the
WebLogic Server Administration Console to get an Edit lock for the domain.

2. In the Domain Structure tree, expand the Services node and select Persistent
Stores.

3. In the Summary of Persistent Stores list, select the custom file store you want to
modify.

4. On the Configuration tab for the custom file store, click Advanced to display
advanced store settings.

Using a Network File System

Tuning the WebLogic Persistent Store 7-13

5. Scroll down to the bottom of the page and deselect the Enable File Locking check
box.

6. Click Save to save the changes. If necessary, click Activate Changes in the Change
Center.

7. If the custom file store was in use, you must restart the server for the changes to
take effect.

The resulting config.xml entry looks like:

Example 7–4 Example config.xml Entry for Disabling File Locking for a Custom File
Store

<file-store>
<name>CustomFileStore-0</name>
<directory>C:\custom-file-store</directory>
<synchronous-write-policy>Direct-Write</synchronous-write-policy>
<io-buffer-size>-1</io-buffer-size>
<max-file-size>1342177280</max-file-size>
<block-size>-1</block-size>
<initial-size>0</initial-size>
<file-locking-enabled>false</file-locking-enabled>
<target>examplesServer</target>
</file-store>

7.5.3.2.3 Disabling File Locking for a JMS Paging File Store Use the following steps to
disable file locking for a JMS paging file store using the WebLogic Server
Administration Console:

1. If necessary, click Lock & Edit in the Change Center (upper left corner) of the
WebLogic Server Administration Console to get an Edit lock for the domain.

2. In the Domain Structure tree, expand the Services node, expand the Messaging
node, and select JMS Servers.

3. In the Summary of JMS Servers list, select the JMS server you want to modify.

4. On the Configuration > General tab for the JMS Server, scroll down and deselect
the Paging File Locking Enabled check box.

5. Click Save to save the changes. If necessary, click Activate Changes in the Change
Center.

6. Restart the server you modified for the changes to take effect.

The resulting config.xml entry looks like:

Example 7–5 Example config.xml Entry for Disabling File Locking for a JMS Paging File
Store

<jms-server>
<name>examplesJMSServer</name>
<target>examplesServer</target>
<persistent-store>exampleJDBCStore</persistent-store>
...
<paging-file-locking-enabled>false</paging-file-locking-enabled>
...
</jms-server>

Using a Network File System

7-14 Tuning Performance of Oracle WebLogic Server

7.5.3.2.4 Disabling File Locking for a Diagnostics File Store Use the following steps to
disable file locking for a Diagnostics file store using the WebLogic Server
Administration Console:

1. If necessary, click Lock & Edit in the Change Center (upper left corner) of the
WebLogic Server Administration Console to get an Edit lock for the domain.

2. In the Domain Structure tree, expand the Diagnostics node and select Archives.

3. In the Summary of Diagnostic Archives list, select the server name of the archive
that you want to modify.

4. On the Settings for [server_name] page, deselect the Diagnostic Store File
Locking Enabled check box.

5. Click Save to save the changes. If necessary, click Activate Changes in the Change
Center.

6. Restart the server you modified for the changes to take effect.

The resulting config.xml entry looks like:

Example 7–6 Example config.xml Entry for Disabling File Locking for a Diagnostics File
Store

<server>
<name>examplesServer</name>
...
<server-diagnostic-config>
<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
<diagnostic-store-file-locking-enabled>false</diagnostic-store-file-lockingenabled
>
<diagnostic-data-archive-type>FileStoreArchive</diagnostic-data-archive-type>
<data-retirement-enabled>true</data-retirement-enabled>
<preferred-store-size-limit>100</preferred-store-size-limit>
<store-size-check-period>1</store-size-check-period>
</server-diagnostic-config>
</server>

8

DataBase Tuning 8-1

8DataBase Tuning

[9] This chapter describes how to tune your database to prevent it from becoming a major
enterprise-level bottleneck. Configure your database for optimal performance by
following the tuning guidelines in this chapter and in the product documentation for
the database you are using.

This chapter includes the following sections:

■ Section 8.1, "General Suggestions"

■ Section 8.2, "Database-Specific Tuning"

8.1 General Suggestions
This section provides general database tuning suggestions:

■ Good database design — Distribute the database workload across multiple disks
to avoid or reduce disk overloading. Good design also includes proper sizing and
organization of tables, indexes, and logs.

■ Disk I/O optimization — Disk I/O optimization is related directly to throughput
and scalability. Access to even the fastest disk is orders of magnitude slower than
memory access. Whenever possible, optimize the number of disk accesses. In
general, selecting a larger block/buffer size for I/O reduces the number of disk
accesses and might substantially increase throughput in a heavily loaded
production environment.

■ Checkpointing — This mechanism periodically flushes all dirty cache data to disk,
which increases the I/O activity and system resource usage for the duration of the
checkpoint. Although frequent checkpointing can increase the consistency of
on-disk data, it can also slow database performance. Most database systems have
checkpointing capability, but not all database systems provide user-level controls.
Oracle, for example, allows administrators to set the frequency of checkpoints
while users have no control over SQLServer 7.x checkpoints. For recommended
settings, see the product documentation for the database you are using.

■ Disk and database overhead can sometimes be dramatically reduced by batching
multiple operations together and/or increasing the number of operations that run
in parallel (increasing concurrency). Examples:

– Increasing the value of the Message bridge BatchSize or the
Store-and-Forward WindowSize can improve performance as larger batch sizes
produce fewer but larger I/Os.

– Programmatically leveraging JDBC's batch APIs.

Database-Specific Tuning

8-2 Tuning Performance of Oracle WebLogic Server

– Use the MDB transaction batching feature. See Chapter 10, "Tuning
Message-Driven Beans".

– Increasing concurrency by increasing max-beans-in-free-pool and thread
pool size for MDBs (or decreasing it if batching can be leveraged).

8.2 Database-Specific Tuning
The following sections provide basic tuning suggestions for Oracle, SQL Server, and
Sybase:

■ Section 8.2.1, "Oracle"

■ Section 8.2.2, "Microsoft SQL Server"

■ Section 8.2.3, "Sybase"

8.2.1 Oracle
This section describes performance tuning for Oracle.

■ Number of processes — On most operating systems, each connection to the Oracle
server spawns a shadow process to service the connection. Thus, the maximum
number of processes allowed for the Oracle server must account for the number of
simultaneous users, as well as the number of background processes used by the
Oracle server. The default number is usually not big enough for a system that
needs to support a large number of concurrent operations. For platform-specific
issues, see your Oracle administrator's guide. The current setting of this parameter
can be obtained with the following query:

SELECT name, value FROM v$parameter WHERE name = 'processes';

■ Buffer pool size —The buffer pool usually is the largest part of the Oracle server
system global area (SGA). This is the location where the Oracle server caches data
that it has read from disk. For read-mostly applications, the single most important
statistic that affects data base performance is the buffer cache hit ratio. The buffer
pool should be large enough to provide upwards of a 95% cache hit ratio. Set the
buffer pool size by changing the value, in data base blocks, of the db_cache_size
parameter in the init.ora file.

■ Shared pool size — The share pool in an important part of the Oracle server
system global area (SGA). The SGA is a group of shared memory structures that
contain data and control information for one Oracle database instance. If multiple
users are concurrently connected to the same instance, the data in the instance's
SGA is shared among the users. The shared pool portion of the SGA caches data
for two major areas: the library cache and the dictionary cache. The library cache
stores SQL-related information and control structures (for example, parsed SQL
statement, locks). The dictionary cache stores operational metadata for SQL
processing.

For most applications, the shared pool size is critical to Oracle performance. If the
shared pool is too small, the server must dedicate resources to managing the
limited amount of available space. This consumes CPU resources and causes
contention because Oracle imposes restrictions on the parallel management of the
various caches. The more you use triggers and stored procedures, the larger the

Note: Always check the tuning guidelines in your database-specific
vendor documentation.

Database-Specific Tuning

DataBase Tuning 8-3

shared pool must be. The SHARED_POOL_SIZE initialization parameter specifies the
size of the shared pool in bytes.

The following query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgastat
WHERE name = 'free memory' AND pool = 'shared pool';

■ Maximum opened cursor — To prevent any single connection taking all the
resources in the Oracle server, the OPEN_CURSORS initialization parameter allows
administrators to limit the maximum number of opened cursors for each
connection. Unfortunately, the default value for this parameter is too small for
systems such as WebLogic Server. Cursor information can be monitored using the
following query:

SELECT name, value FROM v$sysstat
WHERE name LIKE 'opened cursor%';

■ Database block size — A block is Oracle's basic unit for storing data and the
smallest unit of I/O. One data block corresponds to a specific number of bytes of
physical database space on disk. This concept of a block is specific to Oracle
RDBMS and should not be confused with the block size of the underlying
operating system. Since the block size affects physical storage, this value can be set
only during the creation of the database; it cannot be changed once the database
has been created. The current setting of this parameter can be obtained with the
following query:

SELECT name, value FROM v$parameter WHERE name = 'db_block_size';

■ Sort area size — Increasing the sort area increases the performance of large sorts
because it allows the sort to be performed in memory during query processing.
This can be important, as there is only one sort area for each connection at any
point in time. The default value of this init.ora parameter is usually the size of
6–8 data blocks. This value is usually sufficient for OLTP operations but should be
increased for decision support operation, large bulk operations, or large
index-related operations (for example, recreating an index). When performing
these types of operations, you should tune the following init.ora parameters
(which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

8.2.2 Microsoft SQL Server
The following guidelines pertain to performance tuning parameters for Microsoft SQL
Server databases. For more information about these parameters, see your Microsoft
SQL Server documentation.

■ Store tempdb on a fast I/O device.

■ Increase the recovery interval if perfmon shows an increase in I/O.

■ Use an I/O block size larger than 2 KB.

8.2.3 Sybase
The following guidelines pertain to performance tuning parameters for Sybase
databases. For more information about these parameters, see your Sybase
documentation.

Database-Specific Tuning

8-4 Tuning Performance of Oracle WebLogic Server

■ Lower recovery interval setting results in more frequent checkpoint operations,
resulting in more I/O operations.

■ Use an I/O block size larger than 2 KB.

■ Sybase controls the number of engines in a symmetric multiprocessor (SMP)
environment. They recommend configuring this setting to equal the number of
CPUs minus 1.

9

Tuning WebLogic Server EJBs 9-1

9Tuning WebLogic Server EJBs

[10] This chapter describe how to tune WebLogic Server EJBs for your application
environment.

This chapter includes the following sections:

■ Section 9.1, "General EJB Tuning Tips"

■ Section 9.2, "Tuning EJB Caches"

■ Section 9.3, "Tuning EJB Pools"

■ Section 9.4, "CMP Entity Bean Tuning"

■ Section 9.5, "Tuning In Response to Monitoring Statistics"

9.1 General EJB Tuning Tips
■ Deployment descriptors are schema-based. Descriptors that are new in this release

of WebLogic Server are not available as DTD-based descriptors.

■ Avoid using the RequiresNew transaction parameter. Using RequiresNew causes
the EJB container to start a new transaction after suspending any current
transactions. This means additional resources, including a separate data base
connection are allocated.

■ Use local-interfaces or set call-by-reference to true to avoid the overhead of
serialization when one EJB calls another or an EJB is called by a servlet/JSP in the
same application. Note the following:

– In release prior to WebLogic Server 8.1, call-by-reference is turned on by
default. For releases of WebLogic Server 8.1 and higher, call-by-reference is
turned off by default. Older applications migrating to WebLogic Server 8.1
and higher that do not explicitly turn on call-by-reference may experience a
drop in performance.

– This optimization does not apply to calls across different applications.

■ Use Stateless session beans over Stateful session beans whenever possible.
Stateless session beans scale better than stateful session beans because there is no
state information to be maintained.

■ WebLogic Server provides additional transaction performance benefits for EJBs
that reside in a WebLogic Server cluster. When a single transaction uses multiple
EJBs, WebLogic Server attempts to use EJB instances from a single WebLogic
Server instance, rather than using EJBs from different servers. This approach
minimizes network traffic for the transaction. In some cases, a transaction can use
EJBs that reside on multiple WebLogic Server instances in a cluster. This can occur

Tuning EJB Caches

9-2 Tuning Performance of Oracle WebLogic Server

in heterogeneous clusters, where all EJBs have not been deployed to all WebLogic
Server instances. In these cases, WebLogic Server uses a multitier connection to
access the datastore, rather than multiple direct connections. This approach uses
fewer resources, and yields better performance for the transaction. However, for
best performance, the cluster should be homogeneous — all EJBs should reside on
all available WebLogic Server instances.

9.2 Tuning EJB Caches
The following sections provide information on how to tune EJB caches:

■ Section 9.2.1, "Tuning the Stateful Session Bean Cache"

■ Section 9.2.2, "Tuning the Entity Bean Cache"

■ Section 9.2.3, "Tuning the Query Cache"

9.2.1 Tuning the Stateful Session Bean Cache
The EJB Container caches stateful session beans in memory up to a count specified by
the max-beans-in-cache parameter specified in weblogic-ejb-jar.xml. This
parameter should be set equal to the number of concurrent users. This ensures
minimum passivation of stateful session beans to disk and subsequent activation from
disk which yields better performance.

9.2.2 Tuning the Entity Bean Cache
Entity beans are cached at two levels by the EJB container:

■ Section 9.2.2.1, "Transaction-Level Caching"

■ Section 9.2.2.2, "Caching between Transactions"

■ Section 9.2.2.3, "Ready Bean Caching"

9.2.2.1 Transaction-Level Caching
Once an entity bean has been loaded from the database, it is always retrieved from the
cache whenever it is requested when using the findByPrimaryKey or invoked from a
cached reference in that transaction. Getting an entity bean using a non-primary key
finder always retrieves the persistent state of the bean from the data base.

9.2.2.2 Caching between Transactions
Entity bean instances are also cached between transactions. However, by default, the
persistent state of the entity beans are not cached between transactions. To enable
caching between transactions, set the value of the cache-between-transactions
parameter to true.

Is it safe to cache the state? This depends on the concurrency-strategy for that bean.
The entity-bean cache is really only useful when cache-between-transactions can be
safely set to true. In cases where ejbActivate() and ejbPassivate() callbacks are
expensive, it is still a good idea to ensure the entity-cache size is large enough. Even
though the persistent state may be reloaded at least once per transaction, the beans in
the cache are already activated. The value of the cache-size is set by the deployment
descriptor parameter max-beans-in-cache and should be set to maximize cache-hits.
In most situations, the value need not be larger than the product of the number of
rows in the table associated with the entity bean and the number of threads expected
to access the bean concurrently.

Tuning EJB Pools

Tuning WebLogic Server EJBs 9-3

9.2.2.3 Ready Bean Caching
For entity beans with a high cache miss ratio, maintaining ready bean instances can
adversely affect performance.

If you can set disable-ready-instances in the entity-cache element of an
entity-descriptor, the container does not maintain the ready instances in cache. If
the feature is enabled in the deployment descriptor, the cache only keeps the active
instances. Once the involved transaction is committed or rolled back, the bean instance
is moved from active cache to the pool immediately.

9.2.3 Tuning the Query Cache
Query Caching is a new feature in WebLogic Server 9.0 that allows read-only CMP
entity beans to cache the results of arbitrary finders. Query caching is supported for all
finders except prepared-query finders. The query cache can be an application-level
cache as well as a bean-level cache. The size of the cache is limited by the
weblogic-ejb-jar.xml parameter max-queries-in-cache. The finder-level flag in
the weblogic-cmp-rdbms descriptor file, enable-query-caching is used to specify
whether the results of that finder are to be cached. A flag with the same name has the
same purpose for internal relationship finders when applied to the
weblogic-relationship-role element. Queries are evicted from the query-cache
under the following circumstances:

■ The query is least recently used and the query-cache has hit its size limit.

■ At least one of the EJBs that satisfy the query has been evicted from the entity bean
cache, regardless of the reason.

■ The query corresponds to a finder that has eager-relationship-caching enabled
and the query for the associated internal relationship finder has been evicted from
the related bean's query cache.

It is possible to let the size of the entity-bean cache limit the size of the query-cache by
setting the max-queries-in-cache parameter to 0, since queries are evicted from the
cache when the corresponding EJB is evicted. This may avoid some lock contention in
the query cache, but the performance gain may not be significant.

9.3 Tuning EJB Pools
The following section provides information on how to tune EJB pools:

■ Section 9.3.1, "Tuning the Stateless Session Bean Pool"

■ Section 9.3.2, "Tuning the MDB Pool"

■ Section 9.3.3, "Tuning the Entity Bean Pool"

9.3.1 Tuning the Stateless Session Bean Pool
The EJB container maintains a pool of stateless session beans to avoid creating and
destroying instances. Though generally useful, this pooling is even more important for
performance when the ejbCreate() and the setSessionContext() methods are
expensive. The pool has a lower as well as an upper bound. The upper bound is the
more important of the two.

■ The upper bound is specified by the max-beans-in-free-pool parameter. It
should be set equal to the number of threads expected to invoke the EJB
concurrently. Using too small of a value impacts concurrency.

CMP Entity Bean Tuning

9-4 Tuning Performance of Oracle WebLogic Server

■ The lower bound is specified by the initial-beans-in-free-pool parameter.
Increasing the value of initial-beans-in-free-pool increases the time it takes to
deploy the application containing the EJB and contributes to startup time for the
server. The advantage is the cost of creating EJB instances is not incurred at run
time. Setting this value too high wastes memory.

9.3.2 Tuning the MDB Pool
The life cycle of MDBs is very similar to stateless session beans. The MDB pool has the
same tuning parameters as stateless session beans and the same factors apply when
tuning them. In general, most users will find that the default values are adequate for
most applications. See Chapter 10, "Tuning Message-Driven Beans".

9.3.3 Tuning the Entity Bean Pool
The entity bean pool serves two purposes:

■ A target objects for invocation of finders via reflection.

■ A pool of bean instances the container can recruit if it cannot find an instance for a
particular primary key in the cache.

The entity pool contains anonymous instances (instances that do not have a primary
key). These beans are not yet active (meaning ejbActivate() has not been invoked on
them yet), though the EJB context has been set. Entity bean instances evicted from the
entity cache are passivated and put into the pool. The tunables are the
initial-beans-in-free-pool and max-beans-in-free-pool. Unlike stateless session
beans and MDBs, the max-beans-in-free-pool has no relation with the thread count.
You should increase the value of max-beans-in-free-pool if the entity bean
constructor or setEnityContext() methods are expensive.

9.4 CMP Entity Bean Tuning
The largest performance gains in entity beans are achieved by using caching to
minimize the number of interactions with the data base. However, in most situations,
it is not realistic to be able to cache entity beans beyond the scope of a transaction. The
following sections provide information on WebLogic Server EJB container features,
most of which are configurable, that you can use to minimize database interaction
safely:

■ Section 9.4.1, "Use Eager Relationship Caching"

■ Section 9.4.2, "Use JDBC Batch Operations"

■ Section 9.4.3, "Tuned Updates"

■ Section 9.4.4, "Using Field Groups"

■ Section 9.4.5, "include-updates"

■ Section 9.4.6, "call-by-reference"

■ Section 9.4.7, "Bean-level Pessimistic Locking"

■ Section 9.4.8, "Concurrency Strategy"

9.4.1 Use Eager Relationship Caching
Using eager relationship caching allows the EJB container to load related entity beans
using a single SQL join. Use only when the same transaction accesses related beans.

CMP Entity Bean Tuning

Tuning WebLogic Server EJBs 9-5

See "Relationship Caching" in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

In this release of WebLogic Server, if a CMR field has specified both
relationship-caching and cascade-delete, the owner bean and related bean are
loaded to SQL which can provide an additional performance benefit.

9.4.1.1 Using Inner Joins
The EJB container always uses an outer join in a CMP bean finder when eager
relationship-caching is turned on. Typically, inner joins are faster to execute than
outer joins with the drawback that inner joins do not return rows which do not have
data in the corresponding joined table. Where applicable, using an inner join on very
large databases may help to free CPU resources.

In WLS 10.3, use-inner-join has been added in weblogic-cmp-rdbms-jar.xml, as an
attribute of the weblogic-rdbms-bean, as shown here:

<weblogic-rdbms-bean>

 <ejb-name>exampleBean</ejb-name>

...

 <use-inner-join>true</use-inner-join>

</weblogic-rdbms-bean>

This element should only be set to true if the CMP bean's related beans can never be
null or an empty set.

The default value is false. If you specify its value as true, all relationship cache query
on the entity bean use an inner join instead of a left outer join to execute a select query
clause.

9.4.2 Use JDBC Batch Operations
JDBC batch operations are turned on by default in the EJB container. The EJB container
automatically re-orders and executes similar data base operations in a single batch
which increases performance by eliminating the number of data base round trips.
Oracle recommends using batch operations.

9.4.3 Tuned Updates
When an entity EJB is updated, the EJB container automatically updates in the data
base only those fields that have actually changed. As a result the update statements are
simpler and if a bean has not been modified, no data base call is made. Because
different transactions may modify different sets of fields, more than one form of
update statements may be used to store the bean in the data base. It is important that
you account for the types of update statements that may be used when setting the size
of the prepared statement cache in the JDBC connection pool. See Section 11.4, "Cache
Prepared and Callable Statements".

9.4.4 Using Field Groups
Field groups allow the user to segregate commonly used fields into a single group. If
any of the fields in the group is accessed by application/bean code, the entire group is
loaded using a single SQL statement. This group can also be associated with a finder.
When the finder is invoked and finders-load-bean is true, it loads only those fields
from the data base that are included in the field group. This means that if most

CMP Entity Bean Tuning

9-6 Tuning Performance of Oracle WebLogic Server

transactions do not use a particular field that is slow to load, such as a BLOB, it can be
excluded from a field-group. Similarly, if an entity bean has a lot of fields, but a
transaction uses only a small number of them, the unused fields can be excluded.

9.4.5 include-updates
This flag causes the EJB container to flush all modified entity beans to the data base
before executing a finder. If the application modifies the same entity bean more than
once and executes a non-pk finder in-between in the same transaction, multiple
updates to the data base are issued. This flag is turned on by default to comply with
the EJB specification.

If the application has transactions where two invocations of the same or different
finders could return the same bean instance and that bean instance could have been
modified between the finder invocations, it makes sense leaving include-updates
turned on. If not, this flag may be safely turned off. This eliminates an unnecessary
flush to the data base if the bean is modified again after executing the second finder.
This flag is specified for each finder in the cmp-rdbms descriptor.

9.4.6 call-by-reference
When it is turned off, method parameters to an EJB are passed by value, which
involves serialization. For mutable, complex types, this can be significantly expensive.
Consider using for better performance when:

■ The application does not require call-by-value semantics, such as method
parameters are not modified by the EJB.

or

■ If modified by the EJB, the changes need not be invisible to the caller of the
method.

This flag applies to all EJBs, not just entity EJBs. It also applies to EJB invocations
between servlets/JSPs and EJBs in the same application. The flag is turned off by
default to comply with the EJB specification. This flag is specified at the bean-level in
the WebLogic-specific deployment descriptor.

9.4.7 Bean-level Pessimistic Locking
Bean-level pessimistic locking is implemented in the EJB container by acquiring a data
base lock when loading the bean. When implemented, each entity bean can only be
accessed by a single transaction in a single server at a time. All other transactions are
blocked, waiting for the owning transaction to complete. This is a useful alternative to
using a higher data base isolation level, which can be expensive at the RDBMS level.
This flag is specified at the bean level in the cmp-rdbms deployment descriptor.

Note: Be careful to ensure that fields that are accessed in the same
transaction are not configured into separate field-groups. If that
happens, multiple data base calls occur to load the same bean, when
one would have been enough.

Note: If the lock is not exclusive lock, you man encounter deadlock
conditions. If the data base lock is a shared lock, there is potential for
deadlocks when using that RDBMS.

CMP Entity Bean Tuning

Tuning WebLogic Server EJBs 9-7

9.4.8 Concurrency Strategy
The concurrency-strategy deployment descriptor tells the EJB container how to
handle concurrent access of the same entity bean by multiple threads in the same
server instance. Set this parameter to one of four values:

■ Exclusive—The EJB container ensures there is only one instance of an EJB for a
given primary key and this instance is shared among all concurrent transactions in
the server with the container serializing access to it. This concurrency setting
generally does not provide good performance unless the EJB is used infrequently
and chances of concurrent access is small.

■ Database—This is the default value and most commonly used concurrency
strategy. The EJB container defers concurrency control to the database. The
container maintains multiple instances of an EJB for a given primary-key and each
transaction gets it's own copy. In combination with this strategy, the database
isolation-level and bean level pessimistic locking play a major role in determining
if concurrent access to the persistent state should be allowed. It is possible for
multiple transactions to access the bean concurrently so long as it does not need to
go to the database, as would happen when the value of
cache-between-transactions is true. However, setting the value of
cache-between-transactions to true unsafe and not recommended with the
Dababase concurrency strategy.

■ Optimistic—The goal of the optimistic concurrency strategy is to minimize
locking at the data base and while continuing to provide data consistency. The
basic assumption is that the persistent state of the EJB is changed very rarely. The
container attempts to load the bean in a nested transaction so that the
isolation-level settings of the outer transaction does not cause locks to be acquired
at the data base. At commit-time, if the bean has been modified, a predicated
update is used to ensure it's persistent state has not been changed by some other
transaction. If so, an OptimisticConcurrencyException is thrown and must be
handled by the application.

Since EJBs that can use this concurrency strategy are rarely modified, using
cache-between-transactions on can boost performance significantly. This
strategy also allows commit-time verification of beans that have been read, but not
changed. This is done by setting the verify-rows parameter to Read in the
cmp-rdbms descriptor. This provides very high data-consistency while at the same
time minimizing locks at the data base. However, it does slow performance
somewhat. It is recommended that the optimistic verification be performed using
a version column: it is faster, followed closely by timestamp, and more distantly
by modified and read. The modified value does not apply if verify-rows is set to
Read.

When an optimistic concurrency bean is modified in a server that is part of a
cluster, the server attempts to invalidate all instances of that bean cluster-wide in
the expectation that it will prevent OptimisticConcurrencyExceptions. In some
cases, it may be more cost effective to simply let other servers throw an
OptimisticConcurrencyException. in this case, turn off the cluster-wide
invalidation by setting the cluster-invalidation-disabled flag in the cmp-rdbms
descriptor.

■ ReadOnly—The ReadOnly value is the most performant. When selected, the
container assumes the EJB is non-transactional and automatically turns on
cache-between-transactions. Bean states are updated from the data base at
periodic, configurable intervals or when the bean has been programmatically
invalidated. The interval between updates can cause the persistent state of the
bean to become stale. This is the only concurrency-strategy for which

Tuning In Response to Monitoring Statistics

9-8 Tuning Performance of Oracle WebLogic Server

query-caching can be used. See Section 9.2.2.2, "Caching between Transactions".

9.5 Tuning In Response to Monitoring Statistics
The WebLogic Server Administration Console reports a wide variety of EJB runtime
monitoring statistics, many of which are useful for tuning your EJBs. This section
discusses how some of these statistics can help you tune the performance of EJBs.

To display the statistics in the WebLogic Server Administration Console, see
"Monitoring EJBs" in Oracle WebLogic Server Administration Console Online Help. If you
prefer to write a custom monitoring application, you can access the monitoring
statistics using JMX or WLST by accessing the relevant runtime MBeans. See "Runtime
MBeans" in MBean Reference for Oracle WebLogic Server.

9.5.1 Cache Miss Ratio
The cache miss ratio is a ratio of the number of times a container cannot find a bean in
the cache (cache miss) to the number of times it attempts to find a bean in the cache
(cache access):

Cache Miss Ratio = (Cache Total Miss Count / Cache Total Access Count) * 100

A high cache miss ratio could be indicative of an improperly sized cache. If your
application uses a certain subset of beans (read primary keys) more frequently than
others, it would be ideal to size your cache large enough so that the commonly used
beans can remain in the cache as less commonly used beans are cycled in and out upon
demand. If this is the nature of your application, you may be able to decrease your
cache miss ratio significantly by increasing the maximum size of your cache.

If your application doesn't necessarily use a subset of beans more frequently than
others, increasing your maximum cache size may not affect your cache miss ratio. We
recommend testing your application with different maximum cache sizes to determine
which give the lowest cache miss ratio. It is also important to keep in mind that your
server has a finite amount of memory and therefore there is always a trade-off to
increasing your cache size.

9.5.2 Lock Waiter Ratio
When using the Exclusive concurrency strategy, the lock waiter ratio is the ratio of the
number of times a thread had to wait to obtain a lock on a bean to the total amount of
lock requests issued:

Lock Waiter Ratio = (Current Waiter Count / Current Lock Entry Count) * 100

A high lock waiter ratio can indicate a suboptimal concurrency strategy for the bean. If
acceptable for your application, a concurrency strategy of Database or Optimistic will
allow for more parallelism than an Exclusive strategy and remove the need for locking
at the EJB container level.

Because locks are generally held for the duration of a transaction, reducing the
duration of your transactions will free up beans more quickly and may help reduce
your lock waiter ratio. To reduce transaction duration, avoid grouping large amounts
of work into a single transaction unless absolutely necessary.

9.5.3 Lock Timeout Ratio
When using the Exclusive concurrency strategy, the lock timeout ratio is the ratio of
timeouts to accesses for the lock manager:

Tuning In Response to Monitoring Statistics

Tuning WebLogic Server EJBs 9-9

Lock Timeout Ratio =(Lock Manager Timeout Total Count / Lock Manager Total Access
Count) * 100

The lock timeout ratio is closely related to the lock waiter ratio. If you are concerned
about the lock timeout ratio for your bean, first take a look at the lock waiter ratio and
our recommendations for reducing it (including possibly changing your concurrency
strategy). If you can reduce or eliminate the number of times a thread has to wait for a
lock on a bean, you will also reduce or eliminate the amount of timeouts that occur
while waiting.

A high lock timeout ratio may also be indicative of an improper transaction timeout
value. The maximum amount of time a thread will wait for a lock is equal to the
current transaction timeout value.

If the transaction timeout value is set too low, threads may not be waiting long enough
to obtain access to a bean and timing out prematurely. If this is the case, increasing the
trans-timeout-seconds value for the bean may help reduce the lock timeout ratio.

Take care when increasing the trans-timeout-seconds, however, because doing so can
cause threads to wait longer for a bean and threads are a valuable server resource.
Also, doing so may increase the request time, as a request ma wait longer before
timing out.

9.5.4 Pool Miss Ratio
The pool miss ratio is a ratio of the number of times a request was made to get a bean
from the pool when no beans were available, to the total number of requests for a bean
made to the pool:

Pool Miss Ratio = (Pool Total Miss Count / Pool Total Access Count) * 100

If your pool miss ratio is high, you must determine what is happening to your bean
instances. There are three things that can happen to your beans.

■ They are in use.

■ They were destroyed.

■ They were removed.

Follow these steps to diagnose the problem:

1. Check your destroyed bean ratio to verify that bean instances are not being
destroyed.

2. Investigate the cause and try to remedy the situation.

3. Examine the demand for the EJB, perhaps over a period of time.

One way to check this is via the Beans in Use Current Count and Idle Beans Count
displayed in the WebLogic Server Administration Console. If demand for your EJB
spikes during a certain period of time, you may see a lot of pool misses as your pool is
emptied and unable to fill additional requests.

As the demand for the EJB drops and beans are returned to the pool, many of the
beans created to satisfy requests may be unable to fit in the pool and are therefore
removed. If this is the case, you may be able to reduce the number of pool misses by
increasing the maximum size of your free pool. This may allow beans that were
created to satisfy demand during peak periods to remain in the pool so they can be
used again when demand once again increases.

Tuning In Response to Monitoring Statistics

9-10 Tuning Performance of Oracle WebLogic Server

9.5.5 Destroyed Bean Ratio
The destroyed bean ratio is a ratio of the number of beans destroyed to the total
number of requests for a bean.

Destroyed Bean Ratio = (Total Destroyed Count / Total Access Count) * 100

To reduce the number of destroyed beans, Oracle recommends against throwing
non-application exceptions from your bean code except in cases where you want the
bean instance to be destroyed. A non-application exception is an exception that is
either a java.rmi.RemoteException (including exceptions that inherit from
RemoteException) or is not defined in the throws clause of a method of an EJB's home
or component interface.

In general, you should investigate which exceptions are causing your beans to be
destroyed as they may be hurting performance and may indicate problem with the EJB
or a resource used by the EJB.

9.5.6 Pool Timeout Ratio
The pool timeout ratio is a ratio of requests that have timed out waiting for a bean
from the pool to the total number of requests made:

Pool Timeout Ratio = (Pool Total Timeout Count / Pool Total Access Count) * 100

A high pool timeout ratio could be indicative of an improperly sized free pool.
Increasing the maximum size of your free pool via the max-beans-in-free-pool
setting will increase the number of bean instances available to service requests and
may reduce your pool timeout ratio.

Another factor affecting the number of pool timeouts is the configured transaction
timeout for your bean. The maximum amount of time a thread will wait for a bean
from the pool is equal to the default transaction timeout for the bean. Increasing the
trans-timeout-seconds setting in your weblogic-ejb-jar.xml file will give threads
more time to wait for a bean instance to become available.

Users should exercise caution when increasing this value, however, since doing so
may cause threads to wait longer for a bean and threads are a valuable server resource.
Also, request time might increase because a request will wait longer before timing out.

9.5.7 Transaction Rollback Ratio
The transaction rollback ratio is the ratio of transactions that have rolled back to the
number of total transactions involving the EJB:

Transaction Rollback Ratio = (Transaction Total Rollback Count / Transaction Total
Count) * 100

Begin investigating a high transaction rollback ratio by examining the Section 9.5.8,
"Transaction Timeout Ratio" reported in the WebLogic Server Administration Console.
If the transaction timeout ratio is higher than you expect, try to address the timeout
problem first.

An unexpectedly high transaction rollback ratio could be caused by a number of
things. We recommend investigating the cause of transaction rollbacks to find
potential problems with your application or a resource used by your application.

Tuning In Response to Monitoring Statistics

Tuning WebLogic Server EJBs 9-11

9.5.8 Transaction Timeout Ratio
The transaction timeout ratio is the ratio of transactions that have timed out to the total
number of transactions involving an EJB:

Transaction Timeout Ratio = (Transaction Total Timeout Count / Transaction Total
Count) * 100

A high transaction timeout ratio could be caused by the wrong transaction timeout
value. For example, if your transaction timeout is set too low, you may be timing out
transactions before the thread is able to complete the necessary work. Increasing your
transaction timeout value may reduce the number of transaction timeouts.

You should exercise caution when increasing this value, however, since doing so can
cause threads to wait longer for a resource before timing out. Also, request time might
increase because a request will wait longer before timing out.

A high transaction timeout ratio could be caused by a number of things such as a
bottleneck for a server resource. We recommend tracing through your transactions to
investigate what is causing the timeouts so the problem can be addressed.

Tuning In Response to Monitoring Statistics

9-12 Tuning Performance of Oracle WebLogic Server

10

Tuning Message-Driven Beans 10-1

10Tuning Message-Driven Beans

[11] This chapter provides tuning and best practice information for Message-Driven Beans
(MDBs).

This chapter includes the following sections:

■ Section 10.1, "Use Transaction Batching"

■ Section 10.2, "MDB Thread Management"

■ Section 10.3, "Best Practices for Configuring and Deploying MDBs Using
Distributed Topics"

■ Section 10.4, "Using MDBs with Foreign Destinations"

■ Section 10.5, "Token-based Message Polling for Transactional MDBs Listening on
Queues/Topics"

■ Section 10.6, "Compatibility for WLS 10.0 and Earlier-style Polling"

10.1 Use Transaction Batching
MDB transaction batching allows several JMS messages to be processed in one
container managed transaction. Batching amortizes the cost of transactions over
multiple messages and when used appropriately, can reduce or even eliminate the
throughput difference between 2PC and 1PC processing. See "Transaction Batching of
MDBs" in Developing Message-Driven Beans for Oracle WebLogic Server.

■ Using batching may require reducing the number of concurrent MDB instances. If
too many MDB instances are available, messages may be processed in parallel
rather than in a batch. See Section 10.2, "MDB Thread Management".

■ While batching generally increases throughput, it may also increase latency (the
time it takes for an individual message to complete its MDB processing).

10.2 MDB Thread Management
Thread management for MDBs is described in terms of concurrency—the number of
MDB instances that can be active at the same time. The following sections provide
information on MDB concurrency:

■ Section 10.2.1, "Determining the Number of Concurrent MDBs"

■ Section 10.2.2, "Selecting a Concurrency Strategy"

■ Section 10.2.3, "Thread Utilization When Using WebLogic Destinations"

■ Section 10.2.4, "Limitations for Multi-threaded Topic MDBs"

MDB Thread Management

10-2 Tuning Performance of Oracle WebLogic Server

10.2.1 Determining the Number of Concurrent MDBs
Table 10–1 provides information on how to determine the number of concurrently
running MDB instances for a server instance.

Transactional WebLogic MDBs use a synchronous polling mechanism to retrieve
messages from JMS destinations if they are either: A) listening to non-WebLogic
queues; or B) listening to a WebLogic queue and transaction batching is enabled. See
Section 10.5, "Token-based Message Polling for Transactional MDBs Listening on
Queues/Topics".

10.2.2 Selecting a Concurrency Strategy
The following section provides general information on selecting a concurrency
strategy for your applications:

■ In most situations, if the message stream has bursts of messages, using an
unconstrained work manager with a high fair share is adequate. Once the
messages in a burst are handled, the threads are returned to the self-tuning pool.

■ In most situations, if the message arrival rate is high and constant or if low latency
is required, it makes sense to reserve threads for MDBs. You can reserve threads by
either specifying a work manager with a min-threads-constraint or by using a
custom execute queue.

■ If you migrate WebLogic Server 8.1 applications that have custom MDB execute
queues, you can convert the MDB execute queue to a custom work manager that
has a configured max-threads-constraint parameter and a high fair share setting.

■ In WebLogic Server 8.1, you could increase the size of the default execute queue
knowing that a larger default pool means a larger maximum MDB concurrency.
Default thread pool MDBs upgraded to WebLogic Server 9.0 will have a fixed
maximum of 16. To achieve MDB concurrency numbers higher than 16, you will

Table 10–1 Determining Concurrency for WebLogic Server MDBs

Type of work manager or
execute queue Threads

Default work manager or
unconstrained work manager

varies due to self-tuning, up to
Min(max-beans-in-free-pool,16)

Default work manager with
self-tuning disabled

Min(default-thread-pool-size/2+1,
max-beans-in-free-pool)

This is also the default thread pool concurrency algorithm for
WebLogic Server 8.1

Custom execute queue Min(execute-queue-size, max-beans-in-free-pool)

Custom work manager with
constraint

varies due to self-tuning, between min-thread-constraint
and Min(max-threads-constraint,
max-beans-in-free-pool)

Note: Every application is unique, select a concurrency strategy
based on how your application performs in its environment.

Note: You must configure the max-threads-constraint parameter to
override the default concurrency of 16.

MDB Thread Management

Tuning Message-Driven Beans 10-3

need to create a custom work manager or custom execute queue. See Table 10–1.

10.2.3 Thread Utilization When Using WebLogic Destinations
The following section provides information on how threads are allocated when
WebLogic Server interoperates with WebLogic destinations.

■ Non-transactional WebLogic MDBs allocate threads from the thread-pool
designated by the dispatch-policy as needed when there are new messages to be
processed. If the MDB has successfully connected to its source destination, but
there are no messages to be processed, then the MDB will use no threads.

■ Transactional WebLogic MDBs with transaction batching disabled work the same as
non-transactional MDBs except for Topic MDBs with a Topic Messages
Distribution Mode of Compatibility (the default), in which case the MDB always
limits the thread pool size to 1.

■ The behavior of transactional MDBs with transaction batching enabled depends on
whether the MDB is listening on a topic or a queue:

– MDBs listening on topics: — Each deployed MDB uses a dedicated daemon
polling thread that is created in Non-Pooled Threads thread group.

* Topic Messages Distribution Mode = Compatibility: Each deployed MDB
uses a dedicated daemon polling thread that is created in the Non-Pooled
Threads thread group.

* Topic Messages Distribution Mode = One-Copy-Per-Server or
One-Copy-Per-Application: Same as queues.

– MDBs listening on queues — Instead of a dedicated thread, each deployed MDB
uses a token-based, synchronous polling mechanism that always uses at least
one thread from the dispatch-policy. See Section 10.5, "Token-based Message
Polling for Transactional MDBs Listening on Queues/Topics".

For information on how threads are allocated when WebLogic Server interoperates
with MDBs that consume from Foreign destinations, see Section 10.4.2, "Thread
Utilization for MDBs that Process Messages from Foreign Destinations".

10.2.4 Limitations for Multi-threaded Topic MDBs
When the topicMessagesDistributionMode is Compatibility, the default behavior for
non-transactional topic MDBs is to multi-thread the message processing. In this
situation, the MDB container fails to provide reproducible behavior when the topic is
not a WebLogic JMS Topic, such as unexpected exceptions and acknowledgement of
messages that have not yet been processed. For example, if an application throws a
RuntimeException from onmessage, the container may still acknowledge the message.
Oracle recommends setting max-beans-in-free-pool to a value of 1 in the
deployment descriptor to prevent multi-threading in topic MDBs when the topic is a
foreign vendor topic (not a WebLogic JMS topic).

Best Practices for Configuring and Deploying MDBs Using Distributed Topics

10-4 Tuning Performance of Oracle WebLogic Server

Transactional MDBs automatically force concurrency to 1 regardless of the
max-beans-in-free-pool setting.

10.3 Best Practices for Configuring and Deploying MDBs Using
Distributed Topics

Message-driven beans provide a number of application design and deployment
options that offer scalability and high availability when using distributed topics. For
more detailed information, see Configuring and Deploying MDBs Using Distributed
Topics in Developing Message-Driven Beans for Oracle WebLogic Server.

10.4 Using MDBs with Foreign Destinations

The following sections provide information on the behavior of WebLogic Server when
using MDBs that consume messages from Foreign destinations:

■ Section 10.4.1, "Concurrency for MDBs that Process Messages from Foreign
Destinations"

■ Section 10.4.2, "Thread Utilization for MDBs that Process Messages from Foreign
Destinations"

10.4.1 Concurrency for MDBs that Process Messages from Foreign Destinations
The concurrency of MDBs that consume from destinations hosted by foreign providers
(non-WebLogic JMS destinations) is determined using the same algorithm that is used
for WebLogic JMS destinations.

10.4.2 Thread Utilization for MDBs that Process Messages from Foreign Destinations
The following section provides information on how threads are allocated when
WebLogic Server interoperates with MDBs that process messages from foreign
destinations:

Caution:

Non-transactional Foreign Topics: Oracle recommends explicitly setting
max-beans-in-free-pool to 1 for non-transactional MDBs that work
with foreign (non-WebLogic) topics. Failure to do so may result in lost
messages in the event of certain failures, such as the MDB application
throwing Runtime or Error exceptions.

Unit-of-Order: Oracle recommends explicitly setting
max-beans-in-free-pool to 1 for non-transactional Compatibility
mode MDBs that consume from a WebLogic JMS topic and process
messages that have a WebLogic JMS Unit-of-Order value.
Unit-of-Order messages in this use case may not be processed in order
unless max-beans-in-free-pool is set to 1.

Note: The term "Foreign destination" in this context refers to
destinations that are hosted by a non-WebLogic JMS provider. It does
not refer to remote WebLogic destinations.

Token-based Message Polling for Transactional MDBs Listening on Queues/Topics

Tuning Message-Driven Beans 10-5

■ Non-transactional MDBs use a foreign vendor's thread, not a WebLogic Server
thread. In this situation, the dispatch-policy is ignored except for determining
concurrency.

■ Transactional MDBs run in WebLogic Server threads, as follow:

– MDBs listening on topics — Each deployed MDB uses a dedicated daemon
polling thread that is created in Non-Pooled Threads thread group.

– MDBs listening on queues — Instead of a dedicated thread, each deployed MDB
uses a token-based, synchronous polling mechanism that always uses at least
one thread from the dispatch-policy. See Section 10.5, "Token-based Message
Polling for Transactional MDBs Listening on Queues/Topics"

10.5 Token-based Message Polling for Transactional MDBs Listening on
Queues/Topics

Transactional WebLogic MDBs use a synchronous polling mechanism to retrieve
messages from JMS destinations if they are:

■ Listening to non-WebLogic queues

■ Listening to a WebLogic queue and transaction batching is enabled

■ Listening to a WebLogic Topic where:

– Topic Messages Distribution Mode = One-Copy-Per-Server and transaction
batching is enabled

– Topic Messages Distribution Mode = One-Copy-Per-Application and
transaction batching is enabled

With synchronous polling, one or more WebLogic polling threads synchronously
receive messages from the MDB's source destination and then invoke the MDB
application's onMessage callback.

As of WebLogic 10.3, the polling mechanism changed to a token-based approach to
provide better control of the concurrent poller thread count under changing message
loads. In previous releases, the thread count ramp-up could be too gradual in certain
use cases. Additionally, child pollers, once awoken, could not be ramped down and
returned back to the pool for certain foreign JMS providers.

When a thread is returned to the thread pool with token-based polling, the thread's
internal JMS consumer is closed rather than cached. This assures that messages will
not be implicitly pre-fetched by certain foreign JMS Providers while there is no polling
thread servicing the consumer.

In addition, each MDB maintains a single token that provides permission for a given
poller thread to create another thread.

■ On receipt of a message — A poller thread that already has the token or that is able
to acquire the token because the token is not owned, wakes up an additional poller
thread and gives the token to the new poller if the maximum concurrency has not
yet been reached. If maximum concurrency has been reached, the poller thread
simply releases the token (leaving it available to any other poller).

■ On finding an empty queue/Topic — A poller tries to acquire the token and if
successful will try to poll the queue periodically. If it fails to acquire the token, it
returns itself back to the pool. This ensures that with an empty queue or topic,
there is still at least one poller checking for messages.

Compatibility for WLS 10.0 and Earlier-style Polling

10-6 Tuning Performance of Oracle WebLogic Server

10.6 Compatibility for WLS 10.0 and Earlier-style Polling
In WLS 10.0 and earlier, transactional MDBs with batching enabled created a dedicated
polling thread for each deployed MDB. This polling thread was not allocated from the
pool specified by dispatch-policy, it was an entirely new thread in addition to the all
other threads running on the system. See Section 10.1, "Use Transaction Batching".

To override the token-based polling behavior and implement the WLS 10.0 and earlier
behavior, you can either:

■ At the server level, set the weblogic.mdb.message.81StylePolling system
property to True to override the token-based polling behavior.

■ At the MDB level, set the use81-style-polling element under
message-driven-descriptor to override the token-based polling behavior. When
using foreign transactional MDBs with the WLS 8.1-style polling flag, some
foreign vendors require a permanently allocated thread per concurrent MDB
instance. These threads are drawn from the pool specified by dispatch-policy
and are not returned to the pool until the MDB is undeployed. Since these threads
are not shared, the MDB can starve other resources in the same pool. In this
situation, you may need to increase the number of threads in the pool. With the
token-based polling approach for such foreign vendors, the thread's internal JMS
message consumer is closed rather than cached to assure that messages will not be
reserved by the destination for the specific consumer.

11

Tuning Data Sources 11-1

11Tuning Data Sources

[12] This chapter provides tips on how to get the best performance from your WebLogic
data sources.

This chapter includes the following sections:

■ Section 11.1, "Tune the Number of Database Connections"

■ Section 11.2, "Waste Not"

■ Section 11.3, "Use Test Connections on Reserve with Care"

■ Section 11.4, "Cache Prepared and Callable Statements"

■ Section 11.5, "Using Pinned-To-Thread Property to Increase Performance"

■ Section 11.6, "Database Listener Timeout under Heavy Server Loads"

■ Section 11.7, "Disable Wrapping of Data Type Objects"

■ Section 11.8, "Advanced Configurations for Oracle Drivers and Databases"

■ Section 11.9, "Use Best Design Practices"

11.1 Tune the Number of Database Connections
A straightforward and easy way to boost performance of a data source in WebLogic
Server applications is to set the value of Initial Capacity equal to the value for
Maximum Capacity when configuring connection pools in your data source.

Creating a database connection is a relatively expensive process in any environment.
Typically, a connection pool starts with a small number of connections. As client
demand for more connections grow, there may not be enough in the pool to satisfy the
requests. WebLogic Server creates additional connections and adds them to the pool
until the maximum pool size is reached.

One way to avoid connection creation delays for clients using the server is to initialize
all connections at server startup, rather than on-demand as clients need them. Set the
initial number of connections equal to the maximum number of connections in the
Connection Pool tab of your data source configuration. See "JDBC Data Source:
Configuration: Connection Pool" in the Oracle WebLogic Server Administration Console
Online Help. You will still need to determine the optimal value for the Maximum
Capacity as part of your pre-production performance testing.

Note that if you configure the value of Initial Capacity to be zero, WebLogic Server
does not get a connection during startup. This provides a big startup performance
gain, especially if several data sources are available. But more importantly, it allows
the data source to be deployed on startup, even if the database is not available or has

Waste Not

11-2 Tuning Performance of Oracle WebLogic Server

problems at startup (or it could be a standby data source that is not even available
when the primary service is running).

There are two situations in which a connection is reserved, even if Initial Capacity
is zero:

1. For a multi data source configured for LLR, a connection is reserved on each
member data source to determine if the underlying database is an Oracle Real
Application Clusters (Oracle RAC) database. If it is Oracle RAC, only one of the
member data sources must be available.

2. For an Active GridLink (AGL) data source configured with auto-ONS (that is, with
no ONS host and port pairs provided), a connection is created to get the ONS
configuration information from the database.

For more tuning information, see "Tuning Data Source Connection Pool Options" in
Administering JDBC Data Sources for Oracle WebLogic Server.

11.2 Waste Not
Another simple way to boost performance is to avoid wasting resources. Here are
some situations where you can avoid wasting JDBC related resources:

■ JNDI lookups are relatively expensive, so caching an object that required a
looked-up in client code or application code avoids incurring this performance hit
more than once.

■ Once client or application code has a connection, maximize the reuse of this
connection rather than closing and reacquiring a new connection. While acquiring
and returning an existing creation is much less expensive than creating a new one,
excessive acquisitions and returns to pools creates contention in the connection
pool and degrades application performance.

■ Don't hold connections any longer than is necessary to achieve the work needed.
Getting a connection once, completing all necessary work, and returning it as soon
as possible provides the best balance for overall performance.

11.3 Use Test Connections on Reserve with Care
When Test Connections on Reserve is enabled, the server instance checks a database
connection prior to returning the connection to a client. This helps reduce the risk of
passing invalid connections to clients.

However, it is a fairly expensive operation. Typically, a server instance performs the
test by executing a full-fledged SQL query with each connection prior to returning it. If
the SQL query fails, the connection is destroyed and a new one is created in its place.
A new and optional performance tunable has been provided in WebLogic Server 9.x
within this "test connection on reserve" feature. The new optional performance tunable
in 9.x allows WebLogic Server to skip this SQL-query test within a configured time
window of a prior successful client use (default is 10 seconds). When a connection is
returned to the pool by a client, the connection is timestamped by WebLogic Server.
WebLogic Server will then skip the SQL-query test if this particular connection is
returned to a client within the time window. Once the time window expires, WebLogic
Server will execute the SQL-query test. This feature can provide significant
performance boosts for busy systems using "test connection on reserve".

Disable Wrapping of Data Type Objects

Tuning Data Sources 11-3

11.4 Cache Prepared and Callable Statements
When you use a prepared statement or callable statement in an application or EJB,
there is considerable processing overhead for the communication between the
application server and the database server and on the database server itself. To
minimize the processing costs, WebLogic Server can cache prepared and callable
statements used in your applications. When an application or EJB calls any of the
statements stored in the cache, WebLogic Server reuses the statement stored in the
cache. Reusing prepared and callable statements reduces CPU usage on the database
server, improving performance for the current statement and leaving CPU cycles for
other tasks. For more details, see "Increasing Performance with the Statement Cache"
in Administering JDBC Data Sources for Oracle WebLogic Server.

Using the statement cache can dramatically increase performance, but you must
consider its limitations before you decide to use it. For more details, see "Usage
Restrictions for the Statement Cache" in Administering JDBC Data Sources for Oracle
WebLogic Server.

11.5 Using Pinned-To-Thread Property to Increase Performance
To minimize the time it takes for an application to reserve a database connection from
a data source and to eliminate contention between threads for a database connection,
you can add the Pinned-To-Thread property in the connection Properties list for the
data source, and set its value to true.

In this release, the Pinned-To-Thread feature does not work with multi data sources,
Oracle RAC, and IdentityPool. These features rely on the ability to return a connection
to the connection pool and reacquire it if there is a connection failure or connection
identity does not match

See "JDBC Data Source: Configuration: Connection Pool" in the Oracle WebLogic Server
Administration Console Online Help.

11.6 Database Listener Timeout under Heavy Server Loads
In some situations where WebLogic Server is under heavy loads (high CPU
utilization), the database listener may timeout and throw an exception while creating a
new connection. To workaround this issue, increase the listener timeout on the
database server. The following example is for an Oracle driver and database:

■ The exception thrown is a ResourceDeadException and the driver exception was
Socket read timed out.

■ The workaround is to increase the timeout of the database server using the
following:

sqlnet.ora: SQLNET.INBOUND_CONNECT_TIMEOUT=180

listener.ora: INBOUND_CONNECT_TIMEOUT_listener_name=180

11.7 Disable Wrapping of Data Type Objects
By default, data type objects for Array, Blob, Clob, NClob, Ref, SQLXML, and Struct,
plus ParameterMetaData and ResultSetMetaData objects are wrapped with a
WebLogic wrapper. You can disable wrapping, which can improve performance and
allow applications to use native driver objects directly. See Using Unwrapped Data
Type Objects in Administering JDBC Data Sources for Oracle WebLogic Server.

Advanced Configurations for Oracle Drivers and Databases

11-4 Tuning Performance of Oracle WebLogic Server

11.8 Advanced Configurations for Oracle Drivers and Databases
Oracle provides advanced configuration options that can provide improved data
source and driver performance when using Oracle drivers and databases. Options
include proxy authentication, setting credentials on a connection, connection
harvesting, and labeling connections. See "Advanced Configurations for Oracle
Drivers and Databases" in Administering JDBC Data Sources for Oracle WebLogic Server.

11.9 Use Best Design Practices
Most performance gains or losses in a database application is not determined by the
application language, but by how the application is designed. The number and
location of clients, size and structure of DBMS tables and indexes, and the number and
types of queries all affect application performance. See "Designing Your Application
for Best Performance" in Developing JDBC Applications for Oracle WebLogic Server.

12

Tuning Transactions 12-1

12Tuning Transactions

[13] This chapter provides background and tuning information for transaction
optimization.

This chapter includes the following sections:

■ Section 12.1, "Global Transaction Tuning"

■ Section 12.2, "XA Transaction Cluster Affinity"

■ Section 12.3, "Logging Last Resource Transaction Optimization"

■ Section 12.4, "Read-only, One-Phase Commit Optimizations"

■ Section 12.5, "Configure XA Transactions without TLogs"

12.1 Global Transaction Tuning
XA transaction cluster affinity allows server instances that are participating in a global
transactions to service related requests rather than load-balancing these requests to
other member servers. When Enable Transaction Affinity=true, cluster throughput
is increased by:

■ Reducing inter-server transaction coordination traffic

■ Improving resource utilization, such as reducing JDBC connections

■ Simplifying asynchronous processing of transactions

See "Configure clusters" in Oracle WebLogic Server Administration Console Online Help
and "XA Transaction Affinity" in Administering Clusters for Oracle WebLogic Server.

12.2 XA Transaction Cluster Affinity
XA transaction cluster affinity allows server instances that are participating in a global
transactions to service related requests rather than load-balancing these requests to
other member servers. When Enable Transaction Affinity=true, cluster throughput
is increased by:

■ Reducing inter-server transaction coordination traffic

■ Improving resource utilization, such as reducing JDBC connections

■ Simplifying asynchronous processing of transactions

See "Configure clusters" in Oracle WebLogic Server Administration Console Online Help
and "XA Transaction Affinity" in Administering Clusters for Oracle WebLogic Server.

Logging Last Resource Transaction Optimization

12-2 Tuning Performance of Oracle WebLogic Server

12.3 Logging Last Resource Transaction Optimization
The Logging Last Resource (LLR) transaction optimization through JDBC data sources
safely reduces the overhead of two-phase transactions involving database inserts,
updates, and deletes. Two phase transactions occur when two different resources
participate in the same global transaction (global transactions are often referred to as
"XA" or "JTA" transactions). Consider the following:

■ Typical two-phase transactions in JMS applications usually involve both a JMS
server and a database server. The LLR option can as much as double performance
compared to XA.

■ The safety of the JDBC LLR option contrasts with well known but less-safe XA
optimizations such as "last-agent", "last-participant", and
"emulate-two-phase-commit" that are available from other vendors as well as
WebLogic.

■ JDBC LLR works by storing two-phase transaction records in a database table
rather than in the transaction manager log (the TLOG).

See "Logging Last Resource Transaction Optimization" in Developing JTA Applications
for Oracle WebLogic Server.

12.3.1 LLR Tuning Guidelines
The following section provides tuning guidelines for LLR:

■ Oracle recommends that you read and understand "Logging Last Resource
Transaction Optimization" in Developing JTA Applications for Oracle WebLogic Server
and "Programming Considerations and Limitations for LLR Data Sources" in
Administering JDBC Data Sources for Oracle WebLogic Server. LLR has a number of
important administration and design implications.

■ JDBC LLR generally improves performance of two-phase transactions that involve
SQL updates, deletes, or inserts.

■ LLR generally reduces the performance of two-phase transactions where all SQL
operations are read-only (just selects).

■ JDBC LLR pools provide no performance benefit to WebLogic JDBC stores.
WebLogic JDBC stores are fully transactional but do not use JTA (XA) transactions
on their internal JDBC connections.

■ Consider using LLR instead of the less safe "last-agent" optimization for
connectors, and the less safe "emulate-two-phase-commit" option for JDBC
connection pools (formerly known as the "enable two-phase commit" option for
pools that use non-XA drivers).

■ On Oracle databases, heavily used LLR tables may become fragmented over time,
which can lead to unused extents. This is likely due to the highly transient nature
of the LLR table's data. To help avoid the issue, set PCT_FREE to 5 and PCT_USED to
95 on the LLR table. Also periodically defragment using the ALTER TABLESPACE
[tablespace-name] COALESCE command.

12.4 Read-only, One-Phase Commit Optimizations
When resource managers, such as the Oracle Database (including Oracle AQ and
Oracle RAC), provide read-only optimizations, Oracle WebLogic can provide a
read-only, one-phase commit optimization that provides a number of benefits – even
when enabling multiple connections of the same XA transactions – such as eliminating

Configure XA Transactions without TLogs

Tuning Transactions 12-3

XAResource.prepare network calls and transaction log writes, both in Oracle
WebLogic and in the resource manager.

See "Read-only, One-Phase Commit Optimizations" in Developing JTA Applications for
Oracle WebLogic Server.

12.5 Configure XA Transactions without TLogs
Improves XA transaction performance by eliminating TLogs when XA transactions
span a single Transaction Manager (TM). XA transaction resources (Determiners) are
used during transaction recovery when a TLog is not present. See "Transactions
without TLogs" in Developing JTA Applications for Oracle WebLogic Server.

Configure XA Transactions without TLogs

12-4 Tuning Performance of Oracle WebLogic Server

13

Tuning WebLogic JMS 13-1

13Tuning WebLogic JMS

[14] This chapter explains how to get the most out of your applications by implementing
the administrative performance tuning features available with WebLogic JMS.

This chapter includes the following sections:

■ Section 13.1, "JMS Performance & Tuning Check List"

■ Section 13.2, "Handling Large Message Backlogs"

■ Section 13.3, "Cache and Re-use Client Resources"

■ Section 13.4, "Tuning Distributed Queues"

■ Section 13.5, "Tuning Topics"

■ Section 13.6, "Tuning for Large Messages"

■ Section 13.7, "Defining Quota"

■ Section 13.8, "Blocking Senders During Quota Conditions"

■ Section 13.9, "Tuning MessageMaximum"

■ Section 13.10, "Setting Maximum Message Size for Network Protocols"

■ Section 13.11, "Compressing Messages"

■ Section 13.12, "Paging Out Messages To Free Up Memory"

■ Section 13.13, "Controlling the Flow of Messages on JMS Servers and Destinations"

■ Section 13.14, "Handling Expired Messages"

■ Section 13.15, "Tuning Applications Using Unit-of-Order"

■ Section 13.16, "Using One-Way Message Sends"

■ Section 13.17, "Tuning the Messaging Performance Preference Option"

■ Section 13.18, "Client-side Thread Pools"

■ Section 13.19, "Best Practices for JMS .NET Client Applications"

■ Section 13.20, "Considerations for Oracle Data Guard Environments"

13.1 JMS Performance & Tuning Check List
The following section provides a checklist of items to consider when tuning WebLogic
JMS:

■ Always configure quotas, see Section 13.7, "Defining Quota."

JMS Performance & Tuning Check List

13-2 Tuning Performance of Oracle WebLogic Server

■ Verify that default paging settings apply to your needs, see Section 13.12, "Paging
Out Messages To Free Up Memory.". Paging lowers performance but may be
required if JVM memory is insufficient.

■ Avoid large message backlogs. See Section 13.2, "Handling Large Message
Backlogs."

■ Create and use custom connection factories with all applications instead of using
default connection factories, including when using MDBs. Default connection
factories are not tunable, while custom connection factories provide many options
for performance tuning.

■ Write applications so that they cache and re-use JMS client resources, including
JNDI contexts and lookups, and JMS connections, sessions, consumers, or
producers. These resources are relatively expensive to create. For information on
detecting when caching is needed, as well as on built-in pooling features, see
Section 13.3, "Cache and Re-use Client Resources."

■ For asynchronous consumers and MDBs, tune MessagesMaximum on the connection
factory. Increasing MessagesMaximum can improve performance, decreasing
MessagesMaximum to its minimum value can lower performance, but helps ensure
that messages do not end up waiting for a consumer that's already processing a
message. See Section 13.9, "Tuning MessageMaximum."

■ Avoid single threaded processing when possible. Use multiple concurrent
producers and consumers and ensure that enough threads are available to service
them.

■ Tune server-side applications so that they have enough instances. Consider
creating dedicated thread pools for these applications. See Section 10, "Tuning
Message-Driven Beans."

■ For client-side applications with asynchronous consumers, tune client-side thread
pools using Section 13.18, "Client-side Thread Pools."

■ Tune persistence as described in Section 7, "Tuning the WebLogic Persistent Store."
In particular, it's normally best for multiple JMS servers, destinations, and other
services to share the same store so that the store can aggregate concurrent requests
into single physical I/O requests, and to reduce the chance that a JTA transaction
spans more than one store. Multiple stores should only be considered once it's
been established that the a single store is not scaling to handle the current load.

■ If you have large messages, see Section 13.6, "Tuning for Large Messages."

■ Prevent unnecessary message routing in a cluster by carefully configuring
connection factory targets. Messages potentially route through two servers, as they
flow from a client, through the client's connection host, and then on to a final
destination. For server-side applications, target connection factories to the cluster.
For client-side applications that work with a distributed destination, target
connection factories only to servers that host the distributed destinations
members. For client-side applications that work with a singleton destination,
target the connection factory to the same server that hosts the destination.

■ If JTA transactions include both JMS and JDBC operations, consider enabling the
JDBC LLR optimization. LLR is a commonly used safe "ACID" optimization that
can lead to significant performance improvements, with some drawbacks. See
Section 12, "Tuning Transactions."

■ If you are using Java clients, avoid thin Java clients except when a small jar size is
more important than performance. Thin clients use the slower IIOP protocol even

Handling Large Message Backlogs

Tuning WebLogic JMS 13-3

when T3 is specified so use a full java client instead. See Developing Stand-alone
Clients for Oracle WebLogic Server.

■ Tune JMS Store-and-Forward according to Section 14, "Tuning WebLogic JMS
Store-and-Forward."

■ Tune a WebLogic Messaging Bridge according Section 15, "Tuning WebLogic
Message Bridge."

■ If you are using non-persistent non-transactional remote producer clients, then
consider enabling one-way calls. See Section 13.16, "Using One-Way Message
Sends."

■ Consider using JMS distributed queues. See "Using Distributed Queues" in
Developing JMS Applications for Oracle WebLogic Server.

■ If you are already using distributed queues, see Section 13.4, "Tuning Distributed
Queues."

■ Consider using advanced distributed topic features (PDTs). See Developing
Advanced Pub/Sub Applications in Developing JMS Applications for Oracle
WebLogic Server.

■ If your applications use Topics, see Section 13.5, "Tuning Topics."

■ Avoid configuring sorted destinations, including priority sorted destinations. FIFO
or LIFO destinations are the most efficient. Destination sorting can be expensive
when there are large message backlogs, even a backlog of a few hundred messages
can lower performance.

■ Use careful selector design. See "Filtering Messages" in Developing JMS Applications
for Oracle WebLogic Server.

■ Run applications on the same WebLogic Servers that are also hosting destinations.
This eliminates networking and some or all marshalling overhead, and can heavily
reduce network and CPU usage. It also helps ensure that transactions are local to a
single server. This is one of the major advantages of using an application server's
embedded messaging.

13.2 Handling Large Message Backlogs
When message senders inject messages faster than consumers, messages accumulate
into a message backlog. Large backlogs can be problematic for a number of reasons, for
example:

■ Indicates consumers may not be capable of handling the incoming message load,
are failing, or are not properly load balanced across a distributed queue.

■ Can lead to out-of-memory on the server, which in turn prevents the server from
doing any work.

■ Can lead to high garbage collection (GC) overhead. A JVM's GC overhead is
partially proportional to the number of live objects in the JVM.

13.2.1 Improving Message Processing Performance
One area for investigation is to improve overall message processing performance. Here
are some suggestions:

■ Follow the JMS tuning recommendations as described in Section 13.1, "JMS
Performance & Tuning Check List."

Handling Large Message Backlogs

13-4 Tuning Performance of Oracle WebLogic Server

■ Check for programming errors in newly developed applications. In particular,
ensure that non-transactional consumers are acknowledging messages, that
transactional consumers are committing transactions, that plain javax.jms
applications called javax.jms.Connection.start(), and that transaction timeouts
are tuned to reflect the needs of your particular application. Here are some
symptoms of programming errors: consumers are not receiving any messages
(make sure they called start()), high "pending" counts for queues, already
processed persistent messages re-appearing after a shutdown and restart, and
already processed transactional messages re-appearing after a delay (the default
JTA timeout is 30 seconds, default transacted session timeout is one hour).

■ Check WebLogic statistics for queues that are not being serviced by consumers. If
you're having a problem with distributed queues, see Section 13.4, "Tuning
Distributed Queues."

■ Check WebLogic statistics for topics with high pending counts. This usually
indicates that there are topic subscriptions that are not being serviced. There may
be a slow or unresponsive consumer client that's responsible for processing the
messages, or it's possible that a durable subscription may no longer be needed and
should be deleted, or the messages may be accumulating due to delayed
distributed topic forwarding. You can check statistics for individual durable
subscriptions on the WebLogic Server Administration Console. A durable
subscription with a large backlog may have been created by an application but
never deleted. Unserviced durable subscriptions continue to accumulate topic
messages until they are either administratively destroyed, or unsubscribed by a
standard JMS client.

■ Understand distributed topic behavior when not all members are active. In
distributed topics, each produced message to a particular topic member is
forwarded to each remote topic member. If a remote topic member is unavailable
then the local topic member will store each produced message for later
forwarding. Therefore, if a topic member is unavailable for a long period of time,
then large backlogs can develop on the active members. In some applications, this
backlog can be addressed by setting expiration times on the messages. See
Section 13.14.1, "Defining a Message Expiration Policy."

■ In certain applications it may be fine to automatically delete old unprocessed
messages. See Section 13.14, "Handling Expired Messages."

■ For transactional MDBs, consider using MDB transaction batching as this can yield
a 5 fold improvement in some use cases.

■ Leverage distributed queues and add more JVMs to the cluster (in order to add
more distributed queue member instances). For example, split a 200,000 message
backlog across 4 JVMs at 50,000 messages per JVM, instead of 100,000 messages
per JVM.

■ For client applications, use asynchronous consumers instead of synchronous
consumers when possible. Asynchronous consumers can have a significantly
lower network overhead, lower latency, and do not block a thread while waiting
for a message.

■ For synchronous consumer client applications, consider: enabling prefetch, using
CLIENT_ACKNOWLEDGE to enable acknowledging multiple consumed messages at a
time, and using DUPS_OK_ACKNOWLEDGE instead of AUTO_ACKNOWLEDGE.

■ For asynchronous consumer client applications, consider using DUPS_OK_
ACKNOWLEDGE instead of AUTO_ACKNOWLEDGE.

Cache and Re-use Client Resources

Tuning WebLogic JMS 13-5

■ Leverage batching. For example, include multiple messages in each transaction, or
send one larger message instead of many smaller messages.

■ For non-durable subscriber client-side applications handling missing ("dropped")
messages, investigate MULTICAST_NO_ACKNOWLEDGE. This mode broadcasts
messages concurrently to subscribers over UDP multicast.

13.2.2 Controlling Message Production
Another area for investigation is to slow down or even stop message production. Here
are some suggestions:

■ Set lower quotas. See Section 13.7, "Defining Quota."

■ Use fewer producer threads.

■ Tune a sender blocking timeout that occurs during a quota condition, as described
Section 13.8, "Blocking Senders During Quota Conditions.". The timeout is tunable
on connection factory.

■ Tune producer flow control, which automatically slows down producer calls
under threshold conditions. See Section 13.13, "Controlling the Flow of Messages
on JMS Servers and Destinations."

■ Consider modifying the application to implement flow-control. For example, some
applications do not allow producers to inject more messages until a consumer has
successfully processed the previous batch of produced messages (a windowing
protocol). Other applications might implement a request/reply algorithm where a
new request isn't submitted until the previous reply is received (essentially a
windowing protocol with a window size of 1). In some cases, JMS tuning is not
required as the synchronous flow from the RMI/EJB/Servlet is adequate.

13.2.2.1 Drawbacks to Controlling Message Production
Slowing down or stopping message processing has at least two potential drawbacks:

■ It puts back-pressure on the down-stream flow that is calling the producer.
Sometimes the down-stream flow cannot handle this back-pressure, and a
hard-to-handle backlog develops behind the producer. The location of the backlog
depends on what's calling the producer. For example, if the producer is being
called by a servlet, the backlog might manifest as packets accumulating on the
incoming network socket or network card.

■ Blocking calls on server threads can lead to thread-starvation, too many active
threads, or even dead-locks. Usually the key to address this problem is to ensure
that the producer threads are running in a size limited dedicated thread pool, as
this ensures that the blocking threads do not interfere with activity in other thread
pools. For example, if an EJB or servlet is calling a "send" that might block for a
significant time: configure a custom work manager with a max threads constraint,
and set the dispatch-policy of the EJB/servlet to reference this work-manager.

13.3 Cache and Re-use Client Resources
JMS client resources are relatively expensive to create in comparison to sending and
receiving messages. These resources should be cached or pooled for re-use rather than
recreating them with each message. They include contexts, destinations, connection
factories, connections, sessions, consumers, or producers.

In addition, it is important for applications to close contexts, connections, sessions,
consumers, or producers once they are completely done with these resources. Failing

Tuning Distributed Queues

13-6 Tuning Performance of Oracle WebLogic Server

to close unused resources leads to a memory leak, which lowers overall JVM
performance and eventually may cause the JVM to fail with an out-of-memory error.
Be aware that JNDI contexts have close() method, and that closing a JMS connection
automatically efficiently closes all sessions, consumers, and producers created using
the connection.

For server-side applications, WebLogic automatically wraps and pools JMS resources
that are accessed using a resource reference. See "Enhanced Support for Using
WebLogic JMS with EJBs and Servlets" in Developing JMS Applications for Oracle
WebLogic Server. This pooling code can be inefficient at pooling producers if the target
destination changes frequently, but there's a simple work-around: use anonymous
producers by passing null for the destination when the application calls
createProducer() and then instead pass the desired destination into each send call.

■ To check for heavy JMS resource allocation or leaks, you can monitor mbean stats
and/or use your particular JVM's built in facilities. You can monitor mbean stats
using the console, WLST, or java code.

■ Check JVM heap statistics for memory leaks or unexpectedly high allocation
counts.

■ Similarly, check WebLogic statistics for memory leaks or unexpectedly high
allocation counts.

13.4 Tuning Distributed Queues
If produced messages are failing to load balance evenly across all distributed queue
members, you may wish to change the configuration of your producer connection
factories to disable server affinity (enabled by default).

Once created, a JMS consumer remains pinned to a particular queue member. This can
lead to situations where consumers are not evenly load balanced across all distributed
queue members, particularly if new members become available after all consumers
have been initialized. If consumers fail to load balance evenly across all distributed
queue members, the best option is to use an MDB that's targeted to a cluster designed
to process the messages. WebLogic MDBs automatically ensure that all distributed
queue members are serviced. If MDBs are not an option, here are some suggestions to
improve consumer load balancing:

■ Ensure that your application is creating enough consumers and the consumer's
connection factory is tuned using the available load balancing options. In
particular, consider disabling the default server affinity setting.)

■ Change applications to periodically close and recreate consumers. This forces
consumers to re-load balance.

■ Consume from individual queue members instead of from the distributed queues
logical name. Each distributed queue member is individually advertised in JNDI
as jms-server-name@distributed-destination-jndi-name.

■ Configure the distributed queue to enable forwarding. Distributed queue
forwarding automatically internally forwards messages that have been idled on a
member destination without consumers to a member that has consumers. This
approach may not be practical for high message load applications.

Note: Queue forwarding is not compatible with the WebLogic JMS
Unit-of-Order feature, as it can cause messages to be delivered out of
order.

Tuning for Large Messages

Tuning WebLogic JMS 13-7

See "Using Distributed Destinations" in Developing JMS Applications for Oracle
WebLogic Server and Configuring Advanced JMS System Resources in
Administering JMS Resources for Oracle WebLogic Server.

13.5 Tuning Topics
The following section provides information on how to tune WebLogic Topics:

■ You may want to convert singleton topics to distributed topics. A distributed topic
with a Partitioned policy generally outperforms the Replicated policy choice.

■ Oracle highly recommends leveraging MDBs to process Topic messages, especially
when working with Distributed Topics. MDBs automate the creation and servicing
of multiple subscriptions and also provide high scalability options to
automatically distribute the messages for a single subscription across multiple
Distributed Topic members.

■ There is a Sharable subscription extension that allows messages on a single topic
subscription to be processed in parallel by multiple subscribers on multiple JVMs.
WebLogic MDBs leverage this feature when they are not in Compatibility mode.

■ If produced messages are failing to load balance evenly across the members of a
Partitioned Distributed Topic, you may need to change the configuration of your
producer connection factories to disable server affinity (enabled by default).

■ Before using any of these previously mentioned advanced features, Oracle
recommends fully reviewing the following related documentation:

– "Configuring and Deploying MDBs Using Distributed Topics" in Developing
Message-Driven Beans for Oracle WebLogic Server

– "Developing Advanced Pub/Sub Applications" in Administering JMS Resources
for Oracle WebLogic Server

– "Advanced Programming with Distributed Destinations Using the JMS
Destination Availability Helper API" in Administering JMS Resources for Oracle
WebLogic Server

13.5.1 Tuning Non-durable Topic Publishers
Since WebLogic Server 9.0, a non-durable topic message publish request may block
until the message is pushed to all consumers that are currently ready to process the
message. This may cause non-durable topic publishers with large numbers of
consumers to take longer to publish a message than expected. To revert to a publish
that does not wait for consumers and waits only until it's confirmed the message
arrived on a JMS server, use the following property:

-Dweblogic.messaging.DisableTopicMultiSender=true

13.6 Tuning for Large Messages
The following sections provide information on how to improve JMS performance
when handling large messages:

■ Section 13.9, "Tuning MessageMaximum"

■ Section 13.10, "Setting Maximum Message Size for Network Protocols"

■ Section 13.11, "Compressing Messages"

Defining Quota

13-8 Tuning Performance of Oracle WebLogic Server

■ Section 13.12, "Paging Out Messages To Free Up Memory"

13.7 Defining Quota
It is highly recommended to always configure message count quotas. Quotas help
prevent large message backlogs from causing out-of-memory errors, and WebLogic
JMS does not set quotas by default.

There are many options for setting quotas, but in most cases it is enough to simply set
a Messages Maximum quota on each JMS Server rather than using destination level
quotas. Keep in mind that each current JMS message consumes JVM memory even
when the message has been paged out, because paging pages out only the message
bodies but not message headers. A good rule of thumb for queues is to assume that
each current JMS message consumes 512 bytes of memory. A good rule of thumb for
topics is to assume that each current JMS message consumes 256 bytes of memory plus
an additional 256 bytes of memory for each subscriber that hasn't acknowledged the
message yet. For example, if there are 3 subscribers on a topic, then a single published
message that hasn't been processed by any of the subscribers consumes 256 + 256*3 =
1024 bytes even when the message is paged out. Although message header memory
usage is typically significantly less than these rules of thumb indicate, it is a best
practice to make conservative estimates on memory utilization.

In prior releases, there were multiple levels of quotas: destinations had their own
quotas and would also have to compete for quota within a JMS server. In this release,
there is only one level of quota: destinations can have their own private quota or they
can compete with other destinations using a shared quota.

In addition, a destination that defines its own quota no longer also shares space in the
JMS server's quota. Although JMS servers still allow the direct configuration of
message and byte quotas, these options are only used to provide quota for destinations
that do not refer to a quota resource.

13.7.1 Quota Resources
A quota is a named configurable JMS module resource. It defines a maximum number
of messages and bytes, and is then associated with one or more destinations and is
responsible for enforcing the defined maximums. Multiple destinations referring to the
same quota share available quota according to the sharing policy for that quota
resource.

Quota resources include the following configuration parameters:

Table 13–1 Quota Parameters

Attribute Description

Bytes Maximum and
Messages Maximum

The Messages Maximum/Bytes Maximum parameters for a quota
resource defines the maximum number of messages and/or bytes
allowed for that quota resource. No consideration is given to
messages that are pending; that is, messages that are in-flight,
delayed, or otherwise inhibited from delivery still count against the
message and/or bytes quota.

Quota Sharing The Shared parameter for a quota resource defines whether
multiple destinations referring to the same quota resource compete
for resources with each other.

Blocking Senders During Quota Conditions

Tuning WebLogic JMS 13-9

For more information about quota configuration parameters, see QuotaBean in the
MBean Reference for Oracle WebLogic Server. For instructions on configuring a quota
resource using the WebLogic Server Administration Console, see "Create a quota for
destinations" in the Oracle WebLogic Server Administration Console Online Help.

13.7.2 Destination-Level Quota
Destinations no longer define byte and messages maximums for quota, but can use a
quota resource that defines these values, along with quota policies on sharing and
competition.

The Quota parameter of a destination defines which quota resource is used to enforce
quota for the destination. This value is dynamic, so it can be changed at any time.
However, if there are unsatisfied requests for quota when the quota resource is
changed, then those requests will fail with a
javax.jms.ResourceAllocationException.

13.7.3 JMS Server-Level Quota
In some cases, there will be destinations that do not configure quotas. JMS Server
quotas allow JMS servers to limit the resources used by these quota-less destinations.
All destinations that do not explicitly set a value for the Quota attribute share the
quota of the JMS server where they are deployed. The behavior is exactly the same as
if there were a special Quota resource defined for each JMS server with the Shared
parameter enabled.

The interfaces for the JMS server quota are unchanged from prior releases. The JMS
server quota is entirely controlled using methods on the JMSServerMBean. The quota
policy for the JMS server quota is set by the Blocking Send Policy parameter on a JMS
server, as explained in Section 13.8.2, "Specifying a Blocking Send Policy on JMS
Servers". It behaves just like the Policy setting of any other quota.

13.8 Blocking Senders During Quota Conditions
■ Section 13.8.1, "Defining a Send Timeout on Connection Factories"

■ Section 13.8.2, "Specifying a Blocking Send Policy on JMS Servers"

13.8.1 Defining a Send Timeout on Connection Factories
Blocking producers during quota conditions (by defining a send timeout) can
dramatically improve the performance of applications and benchmarks that

Quota Policy The Policy parameter defines how individual clients compete for
quota when no quota is available. It affects the order in which send
requests are unblocked when the Send Timeout feature is enabled
on the connection factory, as described in Section 13.6, "Tuning for
Large Messages".

Note: Outstanding requests for quota will fail at such time that the
quota resource is changed. This does not mean changes to the message
and byte attributes for the quota resource, but when a destination
switches to a different quota.

Table 13–1 (Cont.) Quota Parameters

Attribute Description

Blocking Senders During Quota Conditions

13-10 Tuning Performance of Oracle WebLogic Server

continuously retry message sends on quota failures. The Send Timeout feature
provides more control over message send operations by giving message produces the
option of waiting a specified length of time until space becomes available on a
destination. For example, if a producer makes a request and there is insufficient space,
then the producer is blocked until space becomes available, or the operation times out.
See Section 13.13, "Controlling the Flow of Messages on JMS Servers and Destinations"
for another method of flow control.

To use the WebLogic Server Administration Console to define how long a JMS
connection factory will block message requests when a destination exceeds its
maximum quota.

1. Follow the directions for navigating to the JMS Connection Factory: Configuration:
Flow Control page in "Configure message flow control" in the Oracle WebLogic
Server Administration Console Online Help.

2. In the Send Timeout field, enter the amount of time, in milliseconds, a sender will
block messages when there is insufficient space on the message destination. Once
the specified waiting period ends, one of the following results will occur:

■ If sufficient space becomes available before the timeout period ends, the
operation continues.

■ If sufficient space does not become available before the timeout period ends,
you receive a resource allocation exception.

If you choose not to enable the blocking send policy by setting this value to 0,
then you will receive a resource allocation exception whenever sufficient space
is not available on the destination.

For more information about the Send Timeout field, see "JMS Connection
Factory: Configuration: Flow Control" in the Oracle WebLogic Server
Administration Console Online Help.

3. Click Save.

13.8.2 Specifying a Blocking Send Policy on JMS Servers
The Blocking Send policies enable you to define the JMS server's blocking behavior on
whether to deliver smaller messages before larger ones when multiple message
producers are competing for space on a destination that has exceeded its message
quota.

To use the WebLogic Server Administration Console to define how a JMS server will
block message requests when its destinations are at maximum quota.

1. Follow the directions for navigating to the JMS Server: Configuration: Thresholds
and Quotas page of the WebLogic Server Administration Console in "Configure
JMS server thresholds and quota" in Oracle WebLogic Server Administration Console
Online Help.

2. From the Blocking Send Policy list box, select one of the following options:

■ FIFO — All send requests for the same destination are queued up one behind
the other until space is available. No send request is permitted to complete
when there another send request is waiting for space before it.

■ Preemptive — A send operation can preempt other blocking send operations if
space is available. That is, if there is sufficient space for the current request,
then that space is used even if there are previous requests waiting for space.

Setting Maximum Message Size for Network Protocols

Tuning WebLogic JMS 13-11

■ For more information about the Blocking Send Policy field, see "JMS Server:
Configuration: Thresholds and Quota" in the Oracle WebLogic Server
Administration Console Online Help.

3. Click Save.

13.9 Tuning MessageMaximum
WebLogic JMS pipelines messages that are delivered to asynchronous consumers
(otherwise known as message listeners) or prefetch-enabled synchronous consumers.
This action aids performance because messages are aggregated when they are
internally pushed from the server to the client. The messages backlog (the size of the
pipeline) between the JMS server and the client is tunable by configuring the
MessagesMaximum setting on the connection factory. See "Asynchronous Message
Pipeline" in Developing JMS Applications for Oracle WebLogic Server.

In some circumstances, tuning the MessagesMaximum parameter may improve
performance dramatically, such as when the JMS application defers acknowledges or
commits. In this case, Oracle suggests setting the MessagesMaximum value to:

2 * (ack or commit interval) + 1

For example, if the JMS application acknowledges 50 messages at a time, set the
MessagesMaximum value to 101.

13.9.1 Tuning MessageMaximum Limitations
Tuning the MessagesMaximum value too high can cause:

■ Increased memory usage on the client.

■ Affinity to an existing client as its pipeline fills with messages. For example: If
MessagesMaximum has a value of 10,000,000, the first consumer client to connect
will get all messages that have already arrived at the destination. This condition
leaves other consumers without any messages and creates an unnecessary backlog
of messages in the first consumer that may cause the system to run out of memory.

■ Packet is too large exceptions and stalled consumers. If the aggregate size of the
messages pushed to a consumer is larger than the current protocol's maximum
message size (default size is 10 MB and is configured on a per WebLogic Server
instance basis using the console and on a per client basis using the
-Dweblogic.MaxMessageSize command line property), the message delivery fails.

13.10 Setting Maximum Message Size for Network Protocols
You may need to configure WebLogic clients in addition to the WebLogic Server
instances, when sending and receiving large messages.

For most protocols, including T3, WLS limits the size of a network call to 10MB by
default. If individual JMS message sizes exceed this limit, or if a set of JMS messages
that is batched into the same network call exceeds this limit, this can lead to either
"packet too large exceptions" and/or stalled consumers. Asynchronous consumers can
cause multiple JMS messages to batch into the same network call, to control this batch
size, see Section 13.9.1, "Tuning MessageMaximum Limitations."

To set the maximum message size on a server instance, tune the maximum message
size for each supported protocol on a per protocol basis for each involved default
channel or custom channel. In this context the word 'message' refers to all network
calls over the given protocol, not just JMS calls.

Compressing Messages

13-12 Tuning Performance of Oracle WebLogic Server

To set the maximum message size on a client, use the following command line
property:

-Dweblogic.MaxMessageSize

13.11 Compressing Messages
A message compression threshold can be set programmatically using a JMS API
extension to the WLMessageProducer interface, or administratively by either specifying
a Default Compression Threshold value on a connection factory or on a JMS SAF
remote context. Compressed messages may actually inadvertently affect destination
quotas since some message types actually grow larger when compressed

For instructions on configuring default compression thresholds using the WebLogic
Server Administration Console, see:

■ Connection factories — "Configure default delivery parameters" in the Oracle
WebLogic Server Administration Console Online Help.

■ Store-and-Forward (SAF) remote contexts — "Configure SAF remote contexts" in
the Oracle WebLogic Server Administration Console Online Help.

Once configured, message compression is triggered on producers for client sends, on
connection factories for message receives and message browsing, or through SAF
forwarding. Messages are compressed using GZIP. Compression only occurs when
message producers and consumers are located on separate server instances where
messages must cross a JVM boundary, typically across a network connection when
WebLogic domains reside on different machines. Decompression automatically occurs
on the client side and only when the message content is accessed, except for the
following situations:

■ Using message selectors on compressed XML messages can cause decompression,
since the message body must be accessed in order to filter them. For more
information on defining XML message selectors, see "Filtering Messages" in
Developing JMS Applications for Oracle WebLogic Server.

■ Interoperating with earlier versions of WebLogic Server can cause decompression.
For example, when using the Messaging Bridge, messages are decompressed
when sent from the current release of WebLogic Server to a receiving side that is
an earlier version of WebLogic Server.

On the server side, messages always remains compressed, even when they are written
to disk.

13.12 Paging Out Messages To Free Up Memory
With the message paging feature, JMS servers automatically attempt to free up virtual
memory during peak message load periods. This feature can greatly benefit
applications with large message spaces. Message paging is always enabled on JMS
servers, and so a message paging directory is automatically created without having to
configure one. You can, however, specify a directory using the Paging Directory
option, then paged-out messages are written to files in this directory.

Note: This setting applies to all WebLogic Server network packets
delivered to the client, not just JMS related packets.

Paging Out Messages To Free Up Memory

Tuning WebLogic JMS 13-13

In addition to the paging directory, a JMS server uses either a file store or a JDBC store
for persistent message storage. The file store can be user-defined or the server's default
store. Paged JDBC store persistent messages are copied to both the JDBC store as well
as the JMS Server's paging directory. Paged file store persistent messages that are small
are copied to both the file store as well as the JMS Server's paging directory. Paged
larger file store messages are not copied into the paging directory. See Section 7.2, "Best
Practices When Using Persistent Stores".

However, a paged-out message does not free all of the memory that it consumes, since
the message header with the exception of any user properties, which are paged out
along with the message body, remains in memory for use with searching, sorting, and
filtering. Queuing applications that use selectors to select paged messages may show
severely degraded performance as the paged out messages must be paged back in.
This does not apply to topics or to applications that select based only on message
header fields (such as CorrelationID). A good rule of thumb is to conservatively
assume that messages each use 512 bytes of JVM memory even when paged out.

13.12.1 Specifying a Message Paging Directory
If a paging directory is not specified, then paged-out message bodies are written to the
default \tmp directory inside the servername subdirectory of a domain's root directory.
For example, if no directory name is specified for the default paging directory, it
defaults to:

oracle_home\user_projects\domains\domainname\servers\servername\tmp

where domainname is the root directory of your domain, typically
c:\Oracle\Middleware\Oracle_Home\user_projects\domains\domainname, which is
parallel to the directory in which WebLogic Server program files are stored, typically
c:\Oracle\Middleware\Oracle_Home\wlserver.

To configure the Message Paging Directory attribute, see "Configure general JMS
server properties" in Oracle WebLogic Server Administration Console Online Help.

13.12.2 Tuning the Message Buffer Size Option
The Message Buffer Size option specifies the amount of memory that will be used to
store message bodies in memory before they are paged out to disk. The default value
of Message Buffer Size is approximately one-third of the maximum heap size for the
JVM, or a maximum of 512 megabytes. The larger this parameter is set, the more
memory JMS will consume when many messages are waiting on queues or topics.
Once this threshold is crossed, JMS may write message bodies to the directory
specified by the Paging Directory option in an effort to reduce memory usage below
this threshold.

It is important to remember that this parameter is not a quota. If the number of
messages on the server passes the threshold, the server writes the messages to disk
and evicts the messages from memory as fast as it can to reduce memory usage, but it
will not stop accepting new messages. It is still possible to run out of memory if
messages are arriving faster than they can be paged out. Users with high messaging
loads who wish to support the highest possible availability should consider setting a
quota, or setting a threshold and enabling flow control to reduce memory usage on the
server.

Controlling the Flow of Messages on JMS Servers and Destinations

13-14 Tuning Performance of Oracle WebLogic Server

13.13 Controlling the Flow of Messages on JMS Servers and Destinations
With the Flow Control feature, you can direct a JMS server or destination to slow
down message producers when it determines that it is becoming overloaded. See
Section 13.11, "Compressing Messages".

The following sections describe how flow control feature works and how to configure
flow control on a connection factory.

■ Section 13.13.1, "How Flow Control Works"

■ Section 13.13.2, "Configuring Flow Control"

■ Section 13.13.3, "Flow Control Thresholds"

13.13.1 How Flow Control Works
Specifically, when either a JMS server or it's destinations exceeds its specified byte or
message threshold, it becomes armed and instructs producers to limit their message
flow (messages per second).

Producers will limit their production rate based on a set of flow control attributes
configured for producers via the JMS connection factory. Starting at a specified flow
maximum number of messages, a producer evaluates whether the server/destination is
still armed at prescribed intervals (for example, every 10 seconds for 60 seconds). If at
each interval, the server/destination is still armed, then the producer continues to
move its rate down to its prescribed flow minimum amount.

As producers slow themselves down, the threshold condition gradually corrects itself
until the server/destination is unarmed. At this point, a producer is allowed to increase
its production rate, but not necessarily to the maximum possible rate. In fact, its
message flow continues to be controlled (even though the server/destination is no
longer armed) until it reaches its prescribed flow maximum, at which point it is no
longer flow controlled.

13.13.2 Configuring Flow Control
Producers receive a set of flow control attributes from their session, which receives the
attributes from the connection, and which receives the attributes from the connection
factory. These attributes allow the producer to adjust its message flow.

Specifically, the producer receives attributes that limit its flow within a minimum and
maximum range. As conditions worsen, the producer moves toward the minimum; as
conditions improve; the producer moves toward the maximum. Movement toward the
minimum and maximum are defined by two additional attributes that specify the rate
of movement toward the minimum and maximum. Also, the need for movement
toward the minimum and maximum is evaluated at a configured interval.

Flow Control options are described in following table:

Table 13–2 Flow Control Parameters

Attribute Description

Flow Control Enabled Determines whether a producer can be flow controlled by the JMS
server.

Controlling the Flow of Messages on JMS Servers and Destinations

Tuning WebLogic JMS 13-15

For more information about the flow control fields, and the valid and default values
for them, see "JMS Connection Factory: Configuration: Flow Control" in the Oracle
WebLogic Server Administration Console Online Help.

13.13.3 Flow Control Thresholds
The attributes used for configuring bytes/messages thresholds are defined as part of
the JMS server and/or its destination. Table 13–2 defines how the upper and lower
thresholds start and stop flow control on a JMS server and/or JMS destination.

Flow Maximum The maximum number of messages per second for a producer that
is experiencing a threshold condition.

If a producer is not currently limiting its flow when a threshold
condition is reached, the initial flow limit for that producer is set to
Flow Maximum. If a producer is already limiting its flow when a
threshold condition is reached (the flow limit is less than Flow
Maximum), then the producer will continue at its current flow limit
until the next time the flow is evaluated.

Once a threshold condition has subsided, the producer is not
permitted to ignore its flow limit. If its flow limit is less than the
Flow Maximum, then the producer must gradually increase its flow
to the Flow Maximum each time the flow is evaluated. When the
producer finally reaches the Flow Maximum, it can then ignore its
flow limit and send without limiting its flow.

Flow Minimum The minimum number of messages per second for a producer that
is experiencing a threshold condition. This is the lower boundary of
a producer's flow limit. That is, WebLogic JMS will not further slow
down a producer whose message flow limit is at its Flow
Minimum.

Flow Interval An adjustment period of time, defined in seconds, when a producer
adjusts its flow from the Flow Maximum number of messages to
the Flow Minimum amount, or vice versa.

Flow Steps The number of steps used when a producer is adjusting its flow
from the Flow Minimum amount of messages to the Flow
Maximum amount, or vice versa. Specifically, the Flow Interval
adjustment period is divided into the number of Flow Steps (for
example, 60 seconds divided by 6 steps is 10 seconds per step).

Also, the movement (that is, the rate of adjustment) is calculated by
dividing the difference between the Flow Maximum and the Flow
Minimum into steps. At each Flow Step, the flow is adjusted
upward or downward, as necessary, based on the current
conditions, as follows:

The downward movement (the decay) is geometric over the
specified period of time (Flow Interval) and according to the
specified number of Flow Steps. (For example, 100, 50, 25, 12.5).

The movement upward is linear. The difference is simply divided
by the number of Flow Steps.

Table 13–3 Flow Control Threshold Parameters

Attribute Description

Bytes/Messages Threshold
High

When the number of bytes/messages exceeds this threshold,
the JMS server/destination becomes armed and instructs
producers to limit their message flow.

Table 13–2 (Cont.) Flow Control Parameters

Attribute Description

Handling Expired Messages

13-16 Tuning Performance of Oracle WebLogic Server

For detailed information about other JMS server and destination threshold and quota
fields, and the valid and default values for them, see the following pages in the
Administration Console Online Help:

■ "JMS Server: Configuration: Thresholds and Quotas"

■ "JMS Queue: Configuration: Thresholds and Quotas"

■ "JMS Topic: Configuration: Thresholds and Quotas"

13.14 Handling Expired Messages
The following sections describe two message expiration features, the message
Expiration Policy and the Active Expiration of message, which provide more control
over how the system searches for expired messages and how it handles them when
they are encountered.

Active message expiration ensures that expired messages are cleaned up immediately.
Moreover, expired message auditing gives you the option of tracking expired
messages, either by logging when a message expires or by redirecting expired
messages to a defined error destination.

■ Section 13.14.1, "Defining a Message Expiration Policy"

■ Section 13.14.7, "Tuning Active Message Expiration"

13.14.1 Defining a Message Expiration Policy
Use the message Expiration Policy feature to define an alternate action to take when
messages expire. Using the Expiration Policy attribute on the Destinations node, an
expiration policy can be set on a per destination basis. The Expiration Policy attribute
defines the action that a destination should take when an expired message is
encountered: discard the message, discard the message and log its removal, or redirect
the message to an error destination.

Also, if you use JMS templates to configure multiple destinations, you can use the
Expiration Policy field to quickly configure an expiration policy on all your
destinations. To override a template's expiration policy for specific destinations, you
can modify the expiration policy on any destination.

For instructions on configuring the Expiration Policy, click one of the following links:

■ Section 13.14.2, "Configuring an Expiration Policy on Topics"

■ Section 13.14.3, "Configuring an Expiration Policy on Queues"

■ Section 13.14.4, "Configuring an Expiration Policy on Templates"

■ Section 13.14.5, "Defining an Expiration Logging Policy"

Bytes/Messages Threshold
Low

When the number of bytes/messages falls below this
threshold, the JMS server/destination becomes unarmed and
instructs producers to begin increasing their message flow.

Flow control is still in effect for producers that are below their
message flow maximum. Producers can move their rate
upward until they reach their flow maximum, at which point
they are no longer flow controlled.

Table 13–3 (Cont.) Flow Control Threshold Parameters

Attribute Description

Handling Expired Messages

Tuning WebLogic JMS 13-17

13.14.2 Configuring an Expiration Policy on Topics
Follow these directions if you are configuring an expiration policy on topics without
using a JMS template. Expiration policies that are set on specific topics will override
the settings defined on a JMS template.

1. Follow the directions for navigating to the JMS Topic: Configuration: Delivery
Failure page in "Configure topic message delivery failure options" in the Oracle
WebLogic Server Administration Console Online Help.

2. From the Expiration Policy list box, select an expiration policy option.

■ Discard — Expired messages are removed from the system. The removal is not
logged and the message is not redirected to another location.

■ Log — Removes expired messages and writes an entry to the server log file
indicating that the messages were removed from the system. You define the
actual information that will be logged in the Expiration Logging Policy field in
next step.

■ Redirect — Moves expired messages from their current location into the Error
Destination defined for the topic.

For more information about the Expiration Policy options for a topic, see "JMS
Topic: Configuration: Delivery Failure" in the Oracle WebLogic Server
Administration Console Online Help.

3. If you selected the Log expiration policy in previous step, use the Expiration
Logging Policy field to define what information about the message is logged.

For more information about valid Expiration Logging Policy values, see
Section 13.14.5, "Defining an Expiration Logging Policy".

4. Click Save.

13.14.3 Configuring an Expiration Policy on Queues
Follow these directions if you are configuring an expiration policy on queues without
using a JMS template. Expiration policies that are set on specific queues will override
the settings defined on a JMS template.

1. Follow the directions for navigating to the JMS Queue: Configuration: Delivery
Failure page in "Configure queue message delivery failure options" in the Oracle
WebLogic Server Administration Console Online Help.

2. From the Expiration Policy list box, select an expiration policy option.

■ Discard — Expired messages are removed from the system. The removal is not
logged and the message is not redirected to another location.

■ Log — Removes expired messages from the queue and writes an entry to the
server log file indicating that the messages were removed from the system.
You define the actual information that will be logged in the Expiration
Logging Policy field described in the next step.

■ Redirect — Moves expired messages from the queue and into the Error
Destination defined for the queue.

■ For more information about the Expiration Policy options for a queue, see
"JMS Queue: Configuration: Delivery Failure" in the Oracle WebLogic Server
Administration Console Online Help.

3. If you selected the Log expiration policy in the previous step, use the Expiration
Logging Policy field to define what information about the message is logged.

Handling Expired Messages

13-18 Tuning Performance of Oracle WebLogic Server

For more information about valid Expiration Logging Policy values, see
Section 13.14.5, "Defining an Expiration Logging Policy".

4. Click Save

13.14.4 Configuring an Expiration Policy on Templates
Since JMS templates provide an efficient way to define multiple destinations (topics or
queues) with similar attribute settings, you can configure a message expiration policy
on an existing template (or templates) for your destinations.

1. Follow the directions for navigating to the JMS Template: Configuration: Delivery
Failure page in "Configure JMS template message delivery failure options" in the
Oracle WebLogic Server Administration Console Online Help.

2. In the Expiration Policy list box, select an expiration policy option.

■ Discard — Expired messages are removed from the messaging system. The
removal is not logged and the message is not redirected to another location.

■ Log — Removes expired messages and writes an entry to the server log file
indicating that the messages were removed from the system. The actual
information that is logged is defined by the Expiration Logging Policy field
described in the next step.

■ Redirect — Moves expired messages from their current location into the Error
Destination defined for the destination.

■ For more information about the Expiration Policy options for a template, see
"JMS Template: Configuration: Delivery Failure" in the Oracle WebLogic Server
Administration Console Online Help.

3. If you selected the Log expiration policy in Step 4, use the Expiration Logging
Policy field to define what information about the message is logged.

For more information about valid Expiration Logging Policy values, see
Section 13.14.5, "Defining an Expiration Logging Policy".

4. Click Save.

13.14.5 Defining an Expiration Logging Policy
The following section provides information on the expiration policy.

The Expiration Logging Policy parameter has been deprecated in this release of
WebLogic Server. In its place, Oracle recommends using the Message Life Cycle
Logging feature, which provide a more comprehensive view of the basic events that
JMS messages will traverse through once they are accepted by a JMS server, including
detailed message expiration data. For more information about message life cycle
logging options, see "Message Life Cycle Logging" in Administering JMS Resources for
Oracle WebLogic Server.

For example, you could specify one of the following values:

■ JMSPriority, Name, Address, City, State, Zip

■ %header%, Name, Address, City, State, Zip

■ JMSCorrelationID, %properties%

The JMSMessageID field is always logged and cannot be turned off. Therefore, if the
Expiration Policy is not defined (that is, none) or is defined as an empty string, then
the output to the log file contains only the JMSMessageID of the message.

Handling Expired Messages

Tuning WebLogic JMS 13-19

13.14.6 Expiration Log Output Format
When an expired message is logged, the text portion of the message (not including
timestamps, severity, thread information, security identity, etc.) conforms to the
following format:

<ExpiredJMSMessage JMSMessageId='$MESSAGEID' >
 <HeaderFields Field1='Value1' [Field2='Value2'] …] />
 <UserProperties Property1='Value1' [Property='Value2'] …] />
</ExpiredJMSMessage>

where $MESSAGEID is the exact string returned by Message.getJMSMessageID().

For example:

<ExpiredJMSMessage JMSMessageID='ID:P<851839.1022176920343.0' >
 <HeaderFields JMSPriority='7' JMSRedelivered='false' />
 <UserProperties Make='Honda' Model='Civic' Color='White'Weight='2680' />
</ExpiredJMSMessage>

If no header fields are displayed, the line for header fields is not be displayed. If no
user properties are displayed, that line is not be displayed. If there are no header fields
and no properties, the closing </ExpiredJMSMessage> tag is not necessary as the
opening tag can be terminated with a closing bracket (/>).

For example:

<ExpiredJMSMessage JMSMessageID='ID:N<223476.1022177121567.1' />

All values are delimited with double quotes. All string values are limited to 32
characters in length. Requested fields and/or properties that do not exist are not
displayed. Requested fields and/or properties that exist but have no value (a null
value) are displayed as null (without single quotes). Requested fields and/or
properties that are empty strings are displayed as a pair of single quotes with no space
between them.

For example:

<ExpiredJMSMessage JMSMessageID='ID:N<851839.1022176920344.0' >
 <UserProperties First='Any string longer than 32 char ...' Second=null Third=''
/>
</ExpiredJMSMessage>

13.14.7 Tuning Active Message Expiration
Use the Active Expiration feature to define the timeliness in which expired messages
are removed from the destination to which they were sent or published. Messages are
not necessarily removed from the system at their expiration time, but they are
removed within a user-defined number of seconds. The smaller the window, the closer
the message removal is to the actual expiration time.

13.14.8 Configuring a JMS Server to Actively Scan Destinations for Expired Messages
Follow these directions to define how often a JMS server will actively scan its
destinations for expired messages. The default value is 30 seconds, which means the
JMS server waits 30 seconds between each scan interval.

1. Follow the directions for navigating to the JMS Server: Configuration: General
page of the WebLogic Server Administration Console in "Configure general JMS
server properties" in the Oracle WebLogic Server Administration Console Online Help.

Tuning Applications Using Unit-of-Order

13-20 Tuning Performance of Oracle WebLogic Server

2. In the Scan Expiration Interval field, enter the amount of time, in seconds, that you
want the JMS server to pause between its cycles of scanning its destinations for
expired messages to process.

To disable active scanning, enter a value of 0 seconds. Expired messages are
passively removed from the system as they are discovered.

For more information about the Expiration Scan Interval attribute, see "JMS Server:
Configuration: General" in the Oracle WebLogic Server Administration Console Online
Help.

3. Click Save.

There are a number of design choices that impact performance of JMS applications.
Some others include reliability, scalability, manageability, monitoring, user
transactions, message driven bean support, and integration with an application server.
In addition, there are WebLogic JMS extensions and features have a direct impact on
performance.

For more information on designing your applications for JMS, see "Best Practices for
Application Design" in Developing JMS Applications for Oracle WebLogic Server.

13.15 Tuning Applications Using Unit-of-Order
Message Unit-of-Order is a WebLogic Server value-added feature that enables a
stand-alone message producer, or a group of producers acting as one, to group
messages into a single unit with respect to the processing order (a sub-ordering). This
single unit is called a Unit-of-Order (or UOO) and requires that all messages from that
unit be processed sequentially in the order they were created. UOO replaces the
following complex design patterns:

■ A dedicated consumer with a unique selector per each sub-ordering

■ A new destination per sub-ordering, one consumer per destination.

See "Using Message Unit-of-Order" in Developing JMS Applications for Oracle WebLogic
Server.

13.15.1 Best Practices
The following sections provide best practice information when using UOO:

■ Ideal for applications that have strict message ordering requirements. UOO
simplifies administration and application design, and in most applications
improves performance.

■ Use MDB batching to:

– Speed-up processing of the messages within a single sub-ordering.

– Consume multiple messages at a time under the same transaction.

See Chapter 10, "Tuning Message-Driven Beans".

■ You can configure a default UOO for the destination. Only one consumer on the
destination processes messages for the default UOO at a time.

13.15.2 Using UOO and Distributed Destinations
To ensure strict ordering when using distributed destinations, each different UOO is
pinned to a specific physical destination instance. There are two options for
automatically determining the correct physical destination for a given UOO:

Using One-Way Message Sends

Tuning WebLogic JMS 13-21

■ Hashing – Is generally faster and the UOO setting. Hashing works by using a hash
function on the UOO name to determine the physical destination. It has the
following drawbacks:

– It doesn't correctly handle the administrative deleting or adding physical
destinations to a distributed destination.

– If a UOO hashes to an unavailable destination, the message send fails.

■ Path Service – Is a single server UOO directory service that maps the physical
destination for each UOO. The Path Service is generally slower than hashing if
there are many differently named UOO created per second. In this situation, each
new UOO name implicitly forces a check of the path service before sending the
message. If the number of UOOs created per second is limited, Path Service
performance is not an issue as the UOO paths are cached throughout the cluster.

13.15.3 Migrating Old Applications to Use UOO
For releases prior to WebLogic Server 9.0, applications that had strict message ordering
requirements were required to do the following:

■ Use a single physical destination with a single consumer

■ Ensure the maximum asynchronous consumer message backlog (The
MessagesMaximum parameter on the connection factory) was set to a value of 1.

UOO relaxes these requirements significantly as it allows for multiple consumers and
allows for a asynchronous consumer message backlog of any size. To migrate older
applications to take advantage of UOO, simply configure a default UOO name on the
physical destination. See "Configure connection factory unit-of-order parameters" in
Oracle WebLogic Server Administration Console Online Help and "Ordered Redelivery of
Messages" in Developing JMS Applications for Oracle WebLogic Server.

13.16 Using One-Way Message Sends
One-way message sends can greatly improve the performance of applications that are
bottle-necked by senders, but do so at the risk of introducing a lower QOS
(quality-of-service). Typical message sends from a JMS producer are termed two-way
sends because they include both an internal request and an internal response. When an
producer application calls send(), the call generates a request that contains the
application's message and then waits for a response from the JMS server to confirm its
receipt of the message. This call-and-response mechanism regulates the producer, since
the producer is forced to wait for the JMS server's response before the application can
make another send call. Eliminating the response message eliminates this wait, and
yields a one-way send. WebLogic Server supports a configurable one-way send option
for non-persistent, non-transactional messaging; no application code changes are
required to leverage this feature.

By enabling the One-Way Send Mode options, you allow message producers created
by a user-defined connection factory to do one-way message sends, when possible.
When active, the associated producers can send messages without internally waiting
for a response from the target destination's host JMS server. You can choose to allow
queue senders and topic publishers to do one-way sends, or to limit this capability to
topic publishers only. You must also specify a One-Way Window Size to determine
when a two-way message is required to regulate the producer before it can continue
making additional one-way sends.

Using One-Way Message Sends

13-22 Tuning Performance of Oracle WebLogic Server

13.16.1 Configure One-Way Sends On a Connection Factory
You configure one-way message send parameters on a connection factory by using the
WebLogic Server Administration Console, as described in "Configure connection
factory flow control" in the Oracle WebLogic Server Administration Console Online Help.
You can also use the WebLogic Scripting Tool (WLST) or JMX via the
FlowControlParamsBean MBean.

13.16.2 One-Way Send Support In a Cluster With a Single Destination
To ensure one-way send support in a cluster with a single destination, verify that the
connection factory and the JMS server hosting the destination are targeted to the same
WebLogic server. The connection factory must not be targeted to any other WebLogic
Server instances in the cluster.

13.16.3 One-Way Send Support In a Cluster With Multiple Destinations
To ensure one-way send support in a cluster with multiple destinations that share the
same name, special care is required to ensure the WebLogic Server instance that hosts
the client connection also hosts the destination. One solution is the following:

1. Configure the cluster wide RMI load balancing algorithm to "Server Affinity".

2. Ensure that no two destinations are hosted on the same WebLogic Server instance.

3. Configure each destination to have the same local-jndi-name.

4. Configure a connection factory that is targeted to only those WebLogic Server
instances that host the destinations.

5. Ensure sender clients use the JNDI names configured in Steps 3 and 4 to obtain
their destination and connection factory from their JNDI context.

6. Ensure sender clients use URLs limited to only those WebLogic Server instances
that host the destinations in Step 3.

This solution disables RMI-level load balancing for clustered RMI objects, which
includes EJB homes and JMS connection factories. Effectively, the client will obtain a
connection and destination based only on the network address used to establish the
JNDI context. Load balancing can be achieved by leveraging network load balancing,
which occurs for URLs that include a comma-separated list of WebLogic Server
addresses, or for URLs that specify a DNS name that resolves to a round-robin set of
IP addresses (as configured by a network administrator).

For more information on Server Affinity for clusters, see "Load Balancing for EJBs and
RMI Objects" in Administering Clusters for Oracle WebLogic Server.

13.16.4 When One-Way Sends Are Not Supported
This section defines when one-way sends are not supported. When one-ways are not
supported, the send QOS is automatically upgraded to standard two-ways.

Note: One-way message sends are disabled if your connection
factory is configured with "XA Enabled". This setting disables
one-way sends whether or not the sender actually uses transactions.

Using One-Way Message Sends

Tuning WebLogic JMS 13-23

13.16.5 Different Client and Destination Hosts
One-way sends are supported when the client producer's connection host and the JMS
server hosting the target destination are the same WebLogic Server instance;
otherwise, the one-way mode setting will ignored and standard two-way sends will be
used instead.

13.16.6 XA Enabled On Client's Host Connection Factory
One-way message sends are disabled if the client's host connection factory is
configured with XA Enabled. This setting disables one-way sends whether or not the
sender actually uses transactions.

13.16.7 Higher QOS Detected
When the following higher QOS features are detected, then the one-way mode setting
will be ignored and standard two-way sends will be used instead:

■ XA

■ Transacted sessions

■ Persistent messaging

■ Unit-of-order

■ Unit-of-work

■ Distributed destinations

13.16.8 Destination Quota Exceeded
When the specified quota is exceeded on the targeted destination, then standard
two-way sends will be used until the quota clears.

One-way messages that exceed quota are silently deleted, without immediately
throwing exceptions back to the client. The client will eventually get a quota exception
if the destination is still over quota at the time the next two-way send occurs. (Even in
one-way mode, clients will send a two-way message every One Way Send Window Size
number of messages configured on the client's connection factory.)

A workaround that helps avoid silently-deleted messages during quota conditions is
to increase the value of the Blocking Send Timeout configured on the connection
factory, as described in Section 13.11, "Compressing Messages". The one-way messages
will not be deleted immediately, but instead will optimistically wait on the JMS server
for the specified time until the quota condition clears (presumably due to messages
getting consumed or by messages expiring). The client sender will not block until it
sends a two-way message. For each client, no more than One Way Window Size
messages will accumulate on the server waiting for quota conditions to clear.

13.16.9 Change In Server Security Policy
A change in the server-side security policy could prevent one-way message sends
without notifying the JMS client of the change in security status.

13.16.10 Change In JMS Server or Destination Status
One-way sends can be disabled when a host JMS server or target destination is
administratively undeployed, or when message production is paused on either the
JMS server or the target destination using the "Production Pause/Resume" feature. See

Using One-Way Message Sends

13-24 Tuning Performance of Oracle WebLogic Server

"Production Pause and Production Resume" in Administering JMS Resources for Oracle
WebLogic Server.

13.16.11 Looking Up Logical Distributed Destination Name
One-way message sends work with distributed destinations provided the client looks
up the physical distributed destination members directly rather than using the logical
distributed destination's name. See "Using Distributed Destinations" in Developing JMS
Applications for Oracle WebLogic Server.

13.16.12 Hardware Failure
A hardware or network failure will disable one-way sends. In such cases, the JMS
producer is notified by an OnException or by the next two-way message send. (Even in
one-way mode, clients will send a two-way message every One Way Send Window Size
number of messages configured on the client's connection factory.) The producer will
be closed. The worst-case scenario is that all messages can be lost up to the last
two-way message before the failure occurred.

13.16.13 One-Way Send QOS Guidelines
Use the following QOS-related guidelines when using the one-way send mode for
typical non-persistent messaging.

■ When used in conjunction with the Blocking Sends feature, then using one-way
sends on a well-running system should achieve similar QOS as when using the
two-way send mode.

■ One-way send mode for topic publishers falls within the QOS guidelines set by
the JMS Specification, but does entail a lower QOS than two-way mode (the
WebLogic Server default mode).

■ One-way send mode may not improve performance if JMS consumer applications
are a system bottleneck, as described in "Asynchronous vs. Synchronous
Consumers" in Developing JMS Applications for Oracle WebLogic Server.

■ Consider enlarging the JVM's heap size on the client and/or server to account for
increased batch size (the Window) of sends. The potential memory usage is
proportioned to the size of the configured Window and the number of senders.

■ The sending application will not receive all quota exceptions. One-way messages
that exceed quota are silently deleted, without throwing exceptions back to the
sending client. See Section 13.16.8, "Destination Quota Exceeded" for more
information and a possible work around.

■ Configuring one-way sends on a connection factory effectively disables any
message flow control parameters configured on the connection factory.

■ By default, the One-way Window Size is set to "1", which effectively disables
one-way sends as every one-way message will be upgraded to a two-way send.
(Even in one-way mode, clients will send a two-way message every One Way Send
Window Size number of messages configured on the client's connection factory.)
Therefore, you must set the one-way send window size much higher. It is
recommended to try setting the window size to "300" and then adjust it according
to your application requirements.

■ The client application will not immediately receive network or server failure
exceptions, some messages may be sent but silently deleted until the failure is
detected by WebLogic Server and the producer is automatically closed. See

Tuning the Messaging Performance Preference Option

Tuning WebLogic JMS 13-25

Section 13.16.12, "Hardware Failure" for more information.

13.17 Tuning the Messaging Performance Preference Option

The Messaging Performance Preference tuning option on JMS destinations enables you
to control how long a destination should wait (if at all) before creating full batches of
available messages for delivery to consumers. At the minimum value, batching is
disabled. Tuning above the default value increases the amount of time a destination is
willing to wait before batching available messages. The maximum message count of a
full batch is controlled by the JMS connection factory's Messages Maximum per
Session setting.

Using the WebLogic Server Administration Console, this advanced option is available
on the General Configuration page for both standalone and uniform distributed
destinations (or via the DestinationBean API), as well as for JMS templates (or via the
TemplateBean API).

Specifically, JMS destinations include internal algorithms that attempt to automatically
optimize performance by grouping messages into batches for delivery to consumers.
In response to changes in message rate and other factors, these algorithms change
batch sizes and delivery times. However, it isn't possible for the algorithms to optimize
performance for every messaging environment. The Messaging Performance
Preference tuning option enables you to modify how these algorithms react to changes
in message rate and other factors so that you can fine-tune the performance of your
system.

13.17.1 Messaging Performance Configuration Parameters
The Message Performance Preference option includes the following configuration
parameters:

Note: This is an advanced option for fine tuning. It is normally best
to explore other tuning options first.

Table 13–4 Message Performance Preference Values

WebLogic Server
Administration
Console Value

MBean
Value Description

Do Not Batch
Messages

0 Effectively disables message batching. Available messages
are promptly delivered to consumers.

This is equivalent to setting the value of the connection
factory's Messages Maximum per Session field to "1".

Batch Messages
Without Waiting

25 (default) Less-than-full batches are immediately delivered with
available messages.

This is equivalent to the value set on the connection
factory's Messages Maximum per Session field.

Low Waiting
Threshold for
Message Batching

50 Wait briefly before less-than-full batches are delivered
with available messages. `

Medium Waiting
Threshold for
Message Batching

75 Possibly wait longer before less-than-full batches are
delivered with available messages.

Client-side Thread Pools

13-26 Tuning Performance of Oracle WebLogic Server

It may take some experimentation to find out which value works best for your system.
For example, if you have a queue with many concurrent message consumers, by
selecting the WebLogic Server Administration Console's Do Not Batch Messages value
(or specifying "0" on the DestinationBean MBean), the queue will make every effort to
promptly push messages out to its consumers as soon as they are available.
Conversely, if you have a queue with only one message consumer that doesn't require
fast response times, by selecting the console's High Waiting Threshold for Message
Batching value (or specifying "100" on the DestinationBean MBean), then the queue
will strongly attempt to only push messages to that consumer in batches, which will
increase the waiting period but may improve the server's overall throughput by
reducing the number of sends.

For instructions on configuring Messaging Performance Preference parameters on a
standalone destinations, uniform distributed destinations, or JMS templates using the
WebLogic Server Administration Console, see the following sections in the
Administration Console Online Help:

■ "Configure advanced topic parameters"

■ "Configure advanced queue parameters"

■ "Uniform distributed topics - configure advanced parameters"

■ "Uniform distributed queues - configure advanced parameters"

■ "Configure advanced JMS template parameters"

For more information about these parameters, see DestinationBean and TemplateBean
in the MBean Reference for Oracle WebLogic Server.

13.17.2 Compatibility With the Asynchronous Message Pipeline
The Message Performance Preference option is compatible with asynchronous
consumers using the Asynchronous Message Pipeline, and is also compatible with
synchronous consumers that use the Prefetch Mode for Synchronous Consumers
feature, which simulates the Asynchronous Message Pipeline. However, if the value of
the Maximum Messages value is set too low, it may negate the impact of the
destination's higher-level performance algorithms (e.g., Low, Medium, and High
Waiting Threshold for Message Batching). For more information on the Asynchronous
Message Pipeline, see "Receiving Messages" in Developing JMS Applications for Oracle
WebLogic Server.

13.18 Client-side Thread Pools
With most java client side applications, the default client thread pool size of 5 threads
is sufficient. If, however, the application has a large number of asynchronous
consumers, then it is often beneficial to allocate slightly more threads than
asynchronous consumers. This allows more asynchronous consumers to run
concurrently.

High Waiting
Threshold for
Message Batching

100 Possibly wait even longer before less-than-full batches are
delivered with available messages.

Table 13–4 (Cont.) Message Performance Preference Values

WebLogic Server
Administration
Console Value

MBean
Value Description

Considerations for Oracle Data Guard Environments

Tuning WebLogic JMS 13-27

WebLogic client thread pools are configured differently than WebLogic server
thread-pools, and are not self tuning. WebLogic clients have a specific thread pool that
is used for handling incoming requests from the server, such as JMS MessageListener
invocations. This pool can be configured via the command-line property:

-Dweblogic.ThreadPoolSize=n

 where n is the number of threads

You can force a client-side thread dump to verify that this setting is taking effect.

13.19 Best Practices for JMS .NET Client Applications
The following is a short list of performance related best practices to use when creating
a JMS .NET client application:

■ Always register a connection exception listener using an IConnection if the
application needs to take action when an idle connection fails.

■ Have multiple .NET client threads share a single context to ensure that they use a
single socket.

■ Cache and reuse frequently accessed JMS resources, such as contexts, connections,
sessions, producers, destinations, and connection factories. Creating and closing
these resources consumes significant CPU and network bandwidth.

■ Use DNS aliases or comma separated addresses for load balancing JMS .NET
clients across multiple JMS .NET client host servers in a cluster.

For more information on best practices and other programming considerations for JMS
.NET client applications, see "Programming Considerations" in Use the WebLogic JMS
Client for Microsoft .NET.

13.20 Considerations for Oracle Data Guard Environments
The following sections provide configuration considerations for a WebLogic JMS
environment that includes Oracle Data Guard.

■ Section 13.20.1, "Pause Destinations for Planned Down Time"

■ Section 13.20.2, "Migrate JMS Services for Unexpected Outages"

For more information on Oracle Data Guard, see
http://www.oracle.com/us/products/database/options/active-data-guard/overvie
w/index.html.

13.20.1 Pause Destinations for Planned Down Time
For planned maintenance windows, pause the impacted JMS destinations before
initiating the switch from the production database instance to standby instance. When
the standby database has transitioned to production, resume the JMS destinations. See
"Pause JMS server message operations at runtime" in Oracle WebLogic Server
Administration Console Online Help.

13.20.2 Migrate JMS Services for Unexpected Outages
For unexpected service outages, implement JMS Service migration with the Restart on
Failure option. Should the amount of time required to switch from the production to
standby database exceed the value of the Store IORetryDelaySeconds attribute and the
JMS Services fails, the JMS service and associated store are restarted in-place. See

Considerations for Oracle Data Guard Environments

13-28 Tuning Performance of Oracle WebLogic Server

"In-Place Restarting of Failed Migratable Services" in Administering Clusters for Oracle
WebLogic Server.

14

Tuning WebLogic JMS Store-and-Forward 14-1

14Tuning WebLogic JMS Store-and-Forward

[15] This chapter provides information on how to get the best performance from
Store-and-Forward (SAF) applications. For WebLogic Server releases 9.0 and higher,
JMS provides advanced store-and-forward capability for high-performance message
forwarding from a local server instance to a remote JMS destination. See
"Understanding the Store-and-Forward Service" in Administering the Store-and-Forward
Service for Oracle WebLogic Server.

This chapter includes the following sections:

■ Section 14.1, "Best Practices for JMS SAF"

■ Section 14.2, "Tuning Tips for JMS SAF"

14.1 Best Practices for JMS SAF
■ Avoid using SAF if remote destinations are already highly available. JMS clients

can send directly to remote destinations. Use SAF in situations where remote
destinations are not highly available, such as an unreliable network or different
maintenance schedules.

■ Use the better performing JMS SAF feature instead of using a Messaging Bridge
when forwarding messages to remote destinations. In general, a JMS SAF agent is
significantly faster than a Messaging Bridge. One exception is a configuration
when sending messages in a non-persistent exactly-once mode.

■ Configure separate SAF Agents for JMS SAF and Web Services Reliable Messaging
Agents (WS-RM) to simplify administration and tuning.

■ Sharing the same WebLogic Store between subsystems provides increased
performance for subsystems requiring persistence. For example, transactions that
include SAF and JMS operations, transactions that include multiple SAF
destinations, and transactions that include SAF and EJBs. See Section 7, "Tuning
the WebLogic Persistent Store".

14.2 Tuning Tips for JMS SAF
■ Target imported destinations to multiple SAF agents to load balance message

sends among available SAF agents.

Note: A Messaging Bridge is still required to store-and-forward
messages to foreign destinations and destinations from releases prior
to WebLogic 9.0.

Tuning Tips for JMS SAF

14-2 Tuning Performance of Oracle WebLogic Server

■ Consider using a separate remote SAF context for each SAF destination for better
performance. SAF destinations that use the same remote SAF context are typically
single threaded.

■ Increase the JMS SAF Window Size for applications that handle small messages. By
default, a JMS SAF agent forwards messages in batches that contain up to 10
messages. For small messages size, it is possible to double or triple performance
by increasing the number of messages in each batch to be forwarded. A more
appropriate initial value for Window Size for small messages is 100. You can then
optimize this value for your environment.

Changing the Window Size for applications handling large message sizes is not
likely to increase performance and is not recommended. Window Size also tunes
WS-RM SAF behavior, so it may not be appropriate to tune this parameter for SAF
Agents of type Both.

■ Increase the JMS SAF Window Interval. By default, a JMS SAF agent has a Window
Interval value of 0 which forwards messages as soon as they arrive. This can
lower performance as it can make the effective Window size much smaller than
the configured value. A more appropriate initial value for Window Interval value
is 500 milliseconds. You can then optimize this value for your environment. In this
context, small messages are less than a few K, while large messages are on the
order of tens of K.

Changing the Window Interval improves performance only in cases where the
forwarder is already able to forward messages as fast as they arrive. In this case,
instead of immediately forwarding newly arrived messages, the forwarder pauses
to accumulate more messages and forward them as a batch. The resulting larger
batch size improves forwarding throughput and reduces overall system disk and
CPU usage at the expense of increasing latency.

■ Set the Non-Persistent QOS value to At-Least-Once for imported destinations if
your application can tolerate duplicate messages.

Note: For a distributed queue, WindowSize is ignored and the batch
size is set internally at 1 message.

Note: For a distributed queue, Window Interval is ignored.

15

Tuning WebLogic Message Bridge 15-1

15Tuning WebLogic Message Bridge

[16] This chapter provides information on various methods to improve message bridge
performance.

This chapter includes the following sections:

■ Section 15.1, "Best Practices"

■ Section 15.2, "Changing the Batch Size"

■ Section 15.3, "Changing the Batch Interval"

■ Section 15.4, "Changing the Quality of Service"

■ Section 15.5, "Using Multiple Bridge Instances"

■ Section 15.6, "Changing the Thread Pool Size"

■ Section 15.7, "Avoiding Durable Subscriptions"

■ Section 15.8, "Co-locating Bridges with Their Source or Target Destination"

■ Section 15.9, "Changing the Asynchronous Mode Enabled Attribute"

■ Section 15.10, "Tuning Environments with Many Bridges"

15.1 Best Practices
■ Avoid using a Messaging Bridge if remote destinations are already highly

available. JMS clients can send directly to remote destinations. Use messaging
bridge in situations where remote destinations are not highly available, such as an
unreliable network or different maintenance schedules.

■ Use the better performing JMS SAF feature instead of using a Messaging Bridge
when forwarding messages to remote destinations. In general, a JMS SAF agent is
significantly faster than a Messaging Bridge. One exception is a configuration
when sending messages in a non-persistent exactly-once mode.

15.2 Changing the Batch Size
When the Asynchronous Mode Enabled attribute is set to false and the quality of
service is Exactly-once, the Batch Size attribute can be used to reduce the number of
transaction commits by increasing the number of messages per transaction (batch). The

Note: A Messaging Bridge is still required to store-and-forward
messages to foreign destinations and destinations from releases prior
to WebLogic 9.0.

Changing the Batch Interval

15-2 Tuning Performance of Oracle WebLogic Server

best batch size for a bridge instance depends on the combination of JMS providers
used, the hardware, operating system, and other factors in the application
environment. See "Configure transaction properties" in Oracle WebLogic Server
Administration Console Online Help.

15.3 Changing the Batch Interval
When the Asynchronous Mode Enabled attribute is set to false and the quality of
service is Exactly-once, the BatchInterval attribute is used to adjust the amount of
time the bridge waits for each batch to fill before forwarding batched messages. The
best batch interval for a bridge instance depends on the combination of JMS providers
used, the hardware, operating system, and other factors in the application
environment. For example, if the queue is not very busy, the bridge may frequently
stop forwarding in order to wait batches to fill, indicating the need to reduce the value
of the BatchInterval attribute. See "Configure transaction properties" in Oracle
WebLogic Server Administration Console Online Help.

15.4 Changing the Quality of Service
An Exactly-once quality of service may perform significantly better or worse than
At-most-once and Duplicate-okay.

When the Exactly-once quality of service is used, the bridge must undergo a
two-phase commit with both JMS servers in order to ensure the transaction semantics
and this operation can be very expensive. However, unlike the other qualities of
service, the bridge can batch multiple operations together using Exactly-once service.

You may need to experiment with this parameter to get the best possible performance.
For example, if the queue is not very busy or if non-persistent messages are used,
Exactly-once batching may be of little benefit. See "Configure messaging bridge
instances" in Oracle WebLogic Server Administration Console Online Help.

15.5 Using Multiple Bridge Instances
If message ordering is not required, consider deploying multiple bridges.

Multiple instances of the bridge may be deployed using the same destinations. When
this is done, each instance of the bridge runs in parallel and message throughput may
improve. If multiple bridge instances are used, messages will not be forwarded in the
same order they had in the source destination. See "Create messaging bridge instances"
in Oracle WebLogic Server Administration Console Online Help.

Consider the following factors when deciding whether to use multiple bridges:

■ Some JMS products do not seem to benefit much from using multiple bridges

■ WebLogic JMS messaging performance typically improves significantly, especially
when handling persistent messages.

■ If the CPU or disk storage is already saturated, increasing the number of bridge
instances may decrease throughput.

15.6 Changing the Thread Pool Size
A general bridge configuration rule is to provide a thread for each bridge instance
targeted to a server instance. Use one of the following options to ensure that an
adequate number of threads is available for your environment:

Changing the Asynchronous Mode Enabled Attribute

Tuning WebLogic Message Bridge 15-3

■ Use the common thread pool—A server instance changes its thread pool size
automatically to maximize throughput, including compensating for the number of
bridge instances configured. See "Understanding How WebLogic Server Uses
Thread Pools" in Administering Server Environments for Oracle WebLogic Server.

■ Configure a work manager for the weblogic.jms.MessagingBridge class. See
"Understanding Work Managers" in Administering Server Environments for Oracle
WebLogic Server.

■ Use the WebLogic Server Administration Console to set the Thread Pool Size
property in the Messaging Bridge Configuration section on the Configuration:
Services page for a server instance. To avoid competing with the default execute
thread pool in the server, messaging bridges share a separate thread pool. This
thread pool is used only in synchronous mode (Asynchronous Mode Enabled is not
set). In asynchronous mode the bridge runs in a thread created by the JMS
provider for the source destination. Deprecated in WebLogic Server 9.0.

■ Ensure that the bridge resource adapter pool is twice as large as the number of
bridges. See "Resource Adapters" in Administering the WebLogic Messaging Bridge for
Oracle WebLogic Server.

15.7 Avoiding Durable Subscriptions
If the bridge is listening on a topic and it is acceptable that messages are lost when the
bridge is not forwarding messages, disable the Durability Enabled flag to ensure
undeliverable messages do not accumulate in the source server's store. Disabling the
flag also makes the messages non-persistent. See "Configure messaging bridge
instances" in Oracle WebLogic Server Administration Console Online Help.

15.8 Co-locating Bridges with Their Source or Target Destination
If a messaging bridge source or target is a WebLogic destination, deploy the bridge to
the same WebLogic server as the destination. Targeting a messaging bridge with one of
its destinations eliminates associated network and serialization overhead. Such
overhead can be significant in high-throughput applications, particularly if the
messages are non-persistent.

15.9 Changing the Asynchronous Mode Enabled Attribute
The Asynchronous Mode Enabled attribute determines whether the messaging bridge
receives messages asynchronously using the JMS MessageListener interface at
http://docs.oracle.com/javaee/5/api/javax/jms/MessageListener.html, or
whether the bridge receives messages using the synchronous JMS APIs. In most
situations, the Asynchronous Enabled attributes value is dependent on the QOS
required for the application environment as shown in Table 15–1:

Table 15–1 Asynchronous Mode Enabled Values for QOS Level

QOS Asynchronous Mode Enabled Attribute value

Exactly-once1

1 If the source destination is a non-WebLogic JMS provider and the QOS is Exactly-once, then the
Asynchronous Mode Enabled attribute is disabled and the messages are processed in synchronous mode.

false

At-least-once true

At-most-once true

Tuning Environments with Many Bridges

15-4 Tuning Performance of Oracle WebLogic Server

See "Configure messaging bridge instances" in Oracle WebLogic Server Administration
Console Online Help.

A quality of service of Exactly-once has a significant effect on bridge performance.
The bridge starts a new transaction for each message and performs a two-phase
commit across both JMS servers involved in the transaction. Since the two-phase
commit is usually the most expensive part of the bridge transaction, as the number of
messages being processed increases, the bridge performance tends to decrease.

15.10 Tuning Environments with Many Bridges
This section provides information on how to improve system boot time and general
performance of systems that deploy many bridge instances.

■ Modify the capacity of the connection factory associated with each resource
adaptor by adjusting the max-capacity attribute in the weblogic-ra.xml
descriptor file. The value of the max-capacity attribute should be at least two
times the number of bridge instances.

For example, if your environment has up to ten message bridge instances targeted,
a max-capacity attribute setting of 20 in the default configuration is adequate. But
if you increase the number of bridge instances to 15, increase the max-capacity
attribute to 30. See "Setting the Number of Connection Factories" in Administering
the WebLogic Messaging Bridge for Oracle WebLogic Server.

■ Increase the entire server's thread pool size to something somewhat higher than
the number of active bridges. This applies for any XA (transactional) bridge with a
batch size higher than 1, or any XA bridge that consumes from a source
destination hosted by a non-WebLogic JMS provider.

For example, pass the following on the command line if you have 90 message
bridges:

-Dweblogic.threadpool.MinPoolSize=100

This ensures there are enough threads available when affected bridges initialize. If
there are not enough threads available, there can be a multi-second delay until a
new thread is created.

■ Provide a thread for each bridge instance targeted to a server instance. See
"Changing the Thread Pool Size" on page 15-2.

16

Tuning Resource Adapters 16-1

16Tuning Resource Adapters

[17] This chapter describes best practices for tuning resource adapters.

This chapter includes the following sections:

■ Section 16.1, "Classloading Optimizations for Resource Adapters"

■ Section 16.2, "Connection Optimizations"

■ Section 16.3, "Thread Management"

■ Section 16.4, "InteractionSpec Interface"

16.1 Classloading Optimizations for Resource Adapters
You can package resource adapter classes in one or more JAR files, and then place the
JAR files in the RAR file. These are called nested JARs. When you nest JAR files in the
RAR file, and classes need to be loaded by the classloader, the JARs within the RAR
file must be opened and closed and iterated through for each class that must be
loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size,
there will be no significant performance impact. On the other hand, if there are many
JARs and the JARs are large in size, the performance impact can be great.

To avoid such performance issues, you can either:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of
JARs and hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs
can be exploded within the RAR file. This also eliminates the nesting of JARs and
thus improves the performance of classloading significantly.

16.2 Connection Optimizations
Oracle recommends that resource adapters implement the optional enhancements
described in sections 7.14.2 and 7.14.2 of the J2CA 1.5 Specification at
http://java.sun.com/j2ee/connector/download.html. Implementing these
interfaces allows WebLogic Server to provide several features that will not be available
without them.

Lazy Connection Association, as described in section 7.14.1, allows the server to
automatically clean up unused connections and prevent applications from hogging
resources. Lazy Transaction Enlistment, as described in 7.14.2, allows applications to
start a transaction after a connection is already opened.

Thread Management

16-2 Tuning Performance of Oracle WebLogic Server

16.3 Thread Management
Resource adapter implementations should use the WorkManager (as described in
Chapter 10, "Work Management" in the J2CA 1.5 Specification at
http://java.sun.com/j2ee/connector/download.html) to launch operations that
need to run in a new thread, rather than creating new threads directly. This allows
WebLogic Server to manage and monitor these threads.

16.4 InteractionSpec Interface
WebLogic Server supports the Common Client Interface (CCI) for EIS access, as
defined in Chapter 15, "Common Client Interface" in the J 2CA 1.5 Specification at
http://java.sun.com/j2ee/connector/. The CCI defines a standard client API for
application components that enables application components and EAI frameworks to
drive interactions across heterogeneous EISes.

As a best practice, you should not store the InteractionSpec class that the CCI
resource adapter is required to implement in the RAR file. Instead, you should
package it in a separate JAR file outside of the RAR file, so that the client can access it
without having to put the InteractionSpec interface class in the generic CLASSPATH.

With respect to the InteractionSpec interface, it is important to remember that when
all application components (EJBs, resource adapters, Web applications) are packaged
in an EAR file, all common classes can be placed in the APP-INF/lib directory. This is
the easiest possible scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the
interface is serializable (as is the case with InteractionSpec), then both the client and
the resource adapter need access to the InteractionSpec interface as well as the
implementation classes. However, if the interface extends java.io.Remote, then the
client only needs access to the interface class.

17

Tuning Web Applications 17-1

17Tuning Web Applications

[18] This chapter describes Oracle best practices for tuning Web applications and managing
sessions.

This chapter includes the following sections:

■ Section 17.1, "Best Practices"

■ Section 17.2, "Session Management"

■ Section 17.3, "Pub-Sub Tuning Guidelines"

■ Section 17.4, "Enabling GZIP Compression"

17.1 Best Practices
■ Section 17.1.1, "Disable Page Checks"

■ Section 17.1.2, "Use Custom JSP Tags"

■ Section 17.1.3, "Precompile JSPs"

■ Section 17.1.4, "Use HTML Template Compression"

■ Section 17.1.5, "Use Service Level Agreements"

■ Section 17.1.6, "Related Reading"

17.1.1 Disable Page Checks
You can improve performance by disabling servlet and JDP page checks. Set each of
the following parameters to -1:

■ pageCheckSeconds

■ servlet-reload-check-secs

■ servlet Reload Check

These are default values for production mode.

17.1.2 Use Custom JSP Tags
Oracle provides three specialized JSP tags that you can use in your JSP pages: cache,
repeat, and process. These tags are packaged in a tag library jar file called
weblogic-tags.jar. This jar file contains classes for the tags and a tag library
descriptor (TLD). To use these tags, you copy this jar file to the Web application that
contains your JSPs and reference the tag library in your JSP. See "Using Custom

Session Management

17-2 Tuning Performance of Oracle WebLogic Server

WebLogic JSP Tags (cache, process, repeat)" in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server.

17.1.3 Precompile JSPs
You can configure WebLogic Server to precompile your JSPs when a Web Application
is deployed or re-deployed or when WebLogic Server starts up by setting the
precompile parameter to true in the jsp-descriptor element of the weblogic.xml
deployment descriptor. To avoid recompiling your JSPs each time the server restarts
and when you target additional servers, precompile them using weblogic.appc and
place them in the WEB-INF/classes folder and archive them in a .war file. Keeping
your source files in a separate directory from the archived .war file eliminates the
possibility of errors caused by a JSP having a dependency on one of the class files. For
a complete explanation on how to avoid JSP recompilation, see "Avoiding Unnecessary
JSP Compilation" at
http://www.oracle.com/technetwork/articles/entarch/jsp-reloaded-101726.htm
l.

17.1.4 Use HTML Template Compression
Using the compress-html-template element compresses the HTML in the JSP
template blocks which can improve runtime performance. If the JSP's HTML template
block contains the <pre> HTML tag, do not enable this feature.

See jsp-descriptor in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

17.1.5 Use Service Level Agreements
You should assign servlets and JSPs to work managers based on the service level
agreements required by your applications. See Section 6.4, "Thread Management".

17.1.6 Related Reading
■ "Servlet Best Practices" in Developing Web Applications, Servlets, and JSPs for Oracle

WebLogic Server.

■ "Servlet and JSP Performance Tuning" at
http://www.javaworld.com/javaworld/jw-06-2004/jw-0628-performance_
p.html, by Rahul Chaudhary, JavaWorld, June 2004.

17.2 Session Management
As a general rule, you should optimize your application so that it does as little work as
possible when handling session persistence and sessions. The following sections
provide information on how to design a session management strategy that suits your
environment and application:

■ Section 17.2.1, "Managing Session Persistence"

■ Section 17.2.2, "Minimizing Sessions"

■ Section 17.2.3, "Aggregating Session Data"

17.2.1 Managing Session Persistence
WebLogic Server offers many session persistence mechanisms that cater to the
differing requirements of your application, including Async-replicated and

Session Management

Tuning Web Applications 17-3

Async-JDBC modes. The session persistence mechanisms are configurable at the Web
application layer. Which session management strategy you choose for your application
depends on real-world factors like HTTP session size, session life cycle, reliability, and
session failover requirements. For example, a Web application with no failover
requirements could be maintained as a single memory-based session; whereas, a Web
application with session fail-over requirements could be maintained as replicated
sessions or JDBC-based sessions, based on their life cycle and object size.

In terms of pure performance, replicated session persistence is a better overall choice
when compared to JDBC-based persistence for session state. However,
replicated-based session persistence requires the use of WebLogic clustering, so it isn't
an option in a single-server environment.

On the other hand, an environment using JDBC-based persistence does not require the
use of WebLogic clusters and can maintain the session state for longer periods of time
in the database. One way to improve JDBC-based session persistence is to optimize
your code so that it has as high a granularity for session state persistence as possible.
Other factors that can improve the overall performance of JDBC-based session
persistence are: the choice of database, proper database server configuration, JDBC
driver, and the JDBC connection pool configuration.

For more information on managing session persistence, see:

■ "Configuring Session Persistence" in Developing Web Applications, Servlets, and JSPs
for Oracle WebLogic Server

■ "HTTP Session State Replication" in Administering Clusters for Oracle WebLogic
Server

■ "Using a Database for Persistent Storage (JDBC Persistence)" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server

17.2.2 Minimizing Sessions
Configuring how WebLogic Server manages sessions is a key part of tuning your
application for best performance. Consider the following:

■ Use of sessions involves a scalability trade-off.

■ Use sessions sparingly. In other words, use sessions only for state that cannot
realistically be kept on the client or if URL rewriting support is required. For
example, keep simple bits of state, such as a user's name, directly in cookies. You
can also write a wrapper class to "get" and "set" these cookies, in order to simplify
the work of servlet developers working on the same project.

■ Keep frequently used values in local variables.

For more information, see "Setting Up Session Management" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

17.2.3 Aggregating Session Data
This section provides best practices on how to aggregate session data. WebLogic
Server tracks and replicates changes in the session by attribute so you should:

■ Aggregate session data that changes in tandem into a single session attribute.

■ Aggregate session data that changes frequently and read-only session data into
separate session attributes

For example: If you use a a single large attribute that contains all the session data and
only 10% of that data changes, the entire attribute has to be replicated. This causes

Pub-Sub Tuning Guidelines

17-4 Tuning Performance of Oracle WebLogic Server

unnecessary serialization/deserialization and network overhead. You should move
the 10% of the session data that changes into a separate attribute.

17.3 Pub-Sub Tuning Guidelines
The following section provides general tuning guidelines for a pub-sub server:

■ Increase file descriptors to cater for a large number of long-living connections,
especially for applications with thousands of clients.

■ Tune logging level for WebLogic Server.

■ Tune JVM options. Suggested options: -Xms1536m -Xmx1536m -Xns512m
-XXtlaSize:min=128k,preferred=256k

■ Increase the maximum message. If your application publishes messages under
high volumes, consider setting the value to
<max-message-size>10000000</max-message-size>.

17.4 Enabling GZIP Compression
The WebLogic Server Web container supports HTTP content-encoding GZIP
compression, which is part of HTTP/1.1. With GZIP compression, you can reduce the
size of the data that a Web browser has to download, improving network bandwidth.
You can tune Web applications by enabling and configuring GZIP compression at
either the domain level or Web application level. For more information, see "Enabling
GZIP Compression for Web Applications" in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server.

18

Tuning Web Services 18-1

18Tuning Web Services

[19] This chapter describes Oracle best practices for designing, developing, and deploying
WebLogic Web Services applications and application resources.

This chapter includes the following sections:

■ Section 18.1, "Web Services Best Practices"

■ Section 18.2, "Tuning Web Service Reliable Messaging Agents"

■ Section 18.3, "Tuning Heavily Loaded Systems to Improve Web Service
Performance"

18.1 Web Services Best Practices
Design and architectural decisions have a strong impact on runtime performance and
scalability of Web Service applications. Here are few key recommendations to achieve
best performance.

■ Design Web Service applications for course-grained service with moderate size
payloads.

■ Choose correct service-style & encoding for your Web service application.

■ Control serializer overheads and namespaces declarations to achieve better
performance.

■ Use MTOM/XOP or Fast Infoset to optimizing the format of a SOAP message.

■ Carefully design SOAP attachments and security implementations for minimum
performance overheads.

■ Consider using an asynchronous messaging model for applications with:

– Slow and unreliable transport.

– Complex and long-running process.

■ For transactional Service Oriented Architectures (SOA) consider using the Last
Logging Resource transaction optimization (LLR) to improve performance. See
Section 12, "Tuning Transactions".

■ Use replication and caching of data and schema definitions to improve
performance by minimizing network overhead.

■ Consider any XML compression technique only when XML
compression/decompression overheads are less than network overheads
involved.

Tuning Web Service Reliable Messaging Agents

18-2 Tuning Performance of Oracle WebLogic Server

■ Applications that are heavy users of XML functionality (parsers) may encounter
performance issues or run out of file descriptors. This may occur because XML
parser instances are bootstrapped by doing a lookup in the jaxp.properties file
(JAXP API). Oracle recommends setting the properties on the command line to
avoid unnecessary file operations at runtime and improve performance and
resource usage.

■ Follow "JWS Programming Best Practices" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

■ Follow best practice and tuning recommendations for all underlying components,
such as Section 9, "Tuning WebLogic Server EJBs", Section 17, "Tuning Web
Applications", Section 11, "Tuning Data Sources", and Section 13, "Tuning
WebLogic JMS".

18.2 Tuning Web Service Reliable Messaging Agents
Web Service Reliable Messaging provides advanced store-and-forward capability for
high-performance message forwarding from a local server instance to a remote
destination. See "Understanding the Store-and-Forward Service" in Administering the
Store-and-Forward Service for Oracle WebLogic Server. The following section provides
information on how to get the best performance from Store-and-Forward (SAF)
applications:

■ Configure separate SAF Agents for JMS SAF and Web Services Reliable Messaging
Agents to simplify administration and tuning.

■ Sharing the same WebLogic Store between subsystems provides increased
performance for subsystems requiring persistence. For example, transactions that
include SAF and JMS operations, transactions that include multiple SAF
destinations, and transactions that include SAF and EJBs. See Section 7, "Tuning
the WebLogic Persistent Store".

■ Consider increasing the WindowSize parameter on the remote SAF agent. For
small messages of less than 1K, tuning WindowSize as high as 300 can improve
throughput.

■ Ensure that retry delay is not set too low. This may cause the system to make
unnecessary delivery attempts.

18.3 Tuning Heavily Loaded Systems to Improve Web Service
Performance

The asynchronous request-response, reliable messaging, and buffering features are all
pre-tuned for minimum system resource usage to support a small number of clients
(under 10). If you plan on supporting a larger number of clients or high message
volumes, you should adjust the tuning parameters to accommodate the additional
load, as described in the following sections:

■ Section 18.3.1, "Setting the Work Manager Thread Pool Minimum Size Constraint"

■ Section 18.3.2, "Setting the Buffering Sessions"

■ Section 18.3.3, "Releasing Asynchronous Resources"

Note: WindowSize also tunes JMS SAF behavior, so it may not be
appropriate to tune this parameter for SAF agents of type both.

Tuning Heavily Loaded Systems to Improve Web Service Performance

Tuning Web Services 18-3

18.3.1 Setting the Work Manager Thread Pool Minimum Size Constraint
Define a Work Manager and set the thread pool minimum size constraint
(min-threads-constraint) to a value that is at least as large as the expected number of
concurrent requests or responses into the service.

For example, if a Web service client issues 20 requests in rapid succession, the
recommended thread pool minimum size constraint value would be 20 for the
application hosting the client. If the configured constraint value is too small,
performance can be severely degraded as incoming work waits for a free processing
thread.

For more information about the thread pool minimum size constraint, see
"Constraints" in Administering Server Environments for Oracle WebLogic Server.

18.3.2 Setting the Buffering Sessions
The reliable messaging and buffering features use JMS queue sessions to send
messages to the reliability/buffer queues. By default, WebLogic Server allocates 10
sessions for buffering which enables 10 clients to enqueue messages simultaneously
onto the reliability/buffer queue.

For asynchronous request-response, the request and response portion of the
communication exchange count separately, as two clients. In this case, the default pool
of sessions can support five simultaneous asynchronous request-response clients. To
accommodate the number of concurrent clients you expect in your application, set the
following parameter to twice the number of expected client threads:

-Dweblogic.wsee.buffer.QueueSessionPoolSize=size

18.3.3 Releasing Asynchronous Resources
When using the asynchronous request-response feature, WebLogic Server persistently
stores information about the request until the asynchronous response is returned to the
client. These resources remain in the persistent store until they are released by a
background thread, called the store cleaner.

Often, these resources can be released sooner. Executing the store cleaner more
frequently can help to reduce the size of the persistent store and minimize the time
required to clean it.

By default, the store cleaner runs every two minutes (120000 ms). Oracle recommends
that you set the store cleaner interval to one minute (60000 ms) using the following
Java system property:

-Dweblogic.wsee.StateCleanInterval=60000

Tuning Heavily Loaded Systems to Improve Web Service Performance

18-4 Tuning Performance of Oracle WebLogic Server

19

Tuning WebLogic Tuxedo Connector 19-1

19Tuning WebLogic Tuxedo Connector

[20] This chapter provides information on how to get the best performance from WebLogic
Tuxedo Connector (WTC) applications. The WebLogic Tuxedo Connector (WTC)
provides interoperability between WebLogic Server applications and Tuxedo services.
WTC allows WebLogic Server clients to invoke Tuxedo services and Tuxedo clients to
invoke WebLogic Server Enterprise Java Beans (EJBs) in response to a service request.
See "Introduction to Oracle WebLogic Tuxedo Connector Programming" in Developing
Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server.

This chapter includes the following sections:

■ Section 19.1, "Configuration Guidelines"

■ Section 19.2, "Best Practices"

19.1 Configuration Guidelines
Use the following guidelines when configuring WebLogic Tuxedo Connector:

■ You may have more than one WTC Service in your configuration.

■ You can only target one WTC Service to a server instance.

■ WTC does not support connection pooling. WTC multiplexes requests though a
single physical connection.

■ Configuration changes implemented as follows:

– Changing the session/connection configuration (local APs, remote APs,
Passwords, and Resources) before a connection/session is established. The
changes are accepted and are implemented in the new session/connection.

– Changing the session/connection configuration (local APs, remote APs,
Passwords, and Resources) after a connection/session is established.The
changes accepted but are not implemented in the existing connection/session
until the connection is disconnected and reconnected. See "Assign a WTC
Service to a Server" in Oracle WebLogic Server Administration Console Online
Help.

– Changing the Imported and Exported services configuration. The changes are
accepted and are implemented in the next inbound or outbound request.
Oracle does not recommend this practice as it can leave in-flight requests in an
unknown state.

– Changing the tBridge configuration. Any change in a deployed WTC service
causes an exception. You must untarget the WTC service before making any
tBridge configuration changes. After untargeting and making configuration
changes, you must target the WTC service to implement the changes.

Best Practices

19-2 Tuning Performance of Oracle WebLogic Server

19.2 Best Practices
The following section provides best practices when using WTC:

■ When configuring the connection policy, use ON_STARTUP and INCOMING_ONLY. ON_
STARTUP and INCOMING_ONLY always paired. For example: If a WTC remote access
point is configured with ON_STARTUP, the DM_TDOMAIN section of the Tuxedo
domain configuration must be configured with the remote access point as
INCOMING_ONLY. In this case, WTC always acts as the session initiator. See
"Configuring the Connections Between Access Points" in the Administering
WebLogic Tuxedo Connector for Oracle WebLogic Server.

■ Avoid using connection policy ON_DEMAND. The preferred connection policy is ON_
STARTUP and INCOMING_ONLY. This reduces the chance of service request failure due
to the routing semantics of ON_DEMAND. See "Configuring the Connections Between
Access Points" in the Administering WebLogic Tuxedo Connector for Oracle WebLogic
Server.

■ Consider using the following WTC features: Link Level Failover, Service Level
failover and load balancing when designing your application. See "Configuring
Failover and Failback" in the Administering WebLogic Tuxedo Connector for Oracle
WebLogic Server.

■ Consider using WebLogic Server clusters to provide additional load balancing and
failover. To use WTC in a WebLogic Server cluster:

– Configure a WTC instance on all the nodes of the WebLogic Server cluster.

– Each WTC instance in each cluster node must have the same configuration.

See "How to Manage WebLogic Tuxedo Connector in a Clustered Environment" in
the Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

■ If your WTC to Tuxedo connection uses the internet, use the following security
settings:

– Set the value of Security to DM_PW. See "Authentication of Remote Access
Points" in the Administering WebLogic Tuxedo Connector for Oracle WebLogic
Server.

– Enable Link-level encryption and set the min-encrypt-bits parameter to 40
and the max-encrypt-bits to 128. See "Link-Level Encryption" in the
Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

■ Your application logic should provide mechanisms to manage and interpret error
conditions in your applications.

– See "Application Error Management" in the Developing Oracle WebLogic Tuxedo
Connector Applications for Oracle WebLogic Server.

– See "System Level Debug Settings" in the Administering WebLogic Tuxedo
Connector for Oracle WebLogic Server.

■ Avoid using embedded TypedFML32 buffers inside TypedFML32 buffers. See "Using
FML with WebLogic Tuxedo Connector" in the Developing Oracle WebLogic Tuxedo
Connector Applications for Oracle WebLogic Server.

■ If your application handles heavy loads, consider configuring more remote Tuxedo
access points and let WTC load balance the work load among the access points.
See "Configuring Failover and Failback" in the Administering WebLogic Tuxedo
Connector for Oracle WebLogic Server.

Best Practices

Tuning WebLogic Tuxedo Connector 19-3

■ When using transactional applications, try to make the remote services involved in
the same transaction available from the same remote access point. See "WebLogic
Tuxedo Connector JATMI Transactions" in the Developing Oracle WebLogic Tuxedo
Connector Applications for Oracle WebLogic Server.

■ The number of client threads available when dispatching services from the
gateway may limit the number of concurrent services running. There is no
WebLogic Tuxedo Connector attribute to increase the number of available threads.
Use a reasonable thread model when invoking service. See Section 6.4, "Thread
Management" and "Using Work Managers to Optimize Scheduled Work" in
Administering Server Environments for Oracle WebLogic Server.

■ WebLogic Server Releases 9.2 and higher provide improved routing algorithms
which enhance transaction performance. Specifically, performance is improved
when there are more than one Tuxedo service requests involved in a 2 phase
commit (2PC) transaction. If your application does only single service request to
the Tuxedo domain, you can disable this feature by setting the following WebLogic
Server command line parameter:

-Dweblogic.wtc.xaAffinity=false

■ Call the constructor TypedFML32 using the maximum number of objects in the
buffer. Even if the maximum number is difficult to predict, providing a reasonable
number improves performance. You approximate the maximum number by
multiplying the number of fields by 1.33.

For example:

If there are 50 fields in a TypedFML32 buffer type then the maximum number is 63.
Calling the constructor TypedFML32(63, 50) performs better than TypedFML32().

If there are 50 fields in a TypedFML32 buffer type and each can have maximum 10
occurrences, then call the constructor TypedFML32(625, 50) will give better
performance than TypedFML32()

■ When configuring Tuxedo applications that act as servers interoperating with
WTC clients, take into account of parallelism that may be achieved by carefully
configuring different servers on different Tuxedo machines.

■ Be aware of the possibility of database access deadlock in Tuxedo applications.
You can avoid deadlock through careful Tuxedo application configuration.

■ If your are using WTC load balancing or service level failover, Oracle recommends
that you do not disable WTC transaction affinity.

■ For load balancing outbound requests, configure the imported service with
multiple entries using a different key. The imported service uses composite key to
determine each record's uniqueness. The composite key is compose of "the service
name + the local access point + the primary route in the remote access point list".

The following is an example of how to correctly configure load balancing requests
for service1 between TDomainSession(WDOM1,TUXDOM1) and
TDomainSession(WDOM1,TUXDOM2:

Note: This performance tip does not apply to TypedFML buffer type.

Best Practices

19-4 Tuning Performance of Oracle WebLogic Server

The following is an example an incorrectly configured load balancing requests. The
following configuration results in the same composite key for service1:

Table 19–1 Example of Correctly Configured Load Balancing

ResourceName LocalAccessPoint RemoteAccessPointList RemoteName

service1 WDOM1 TUXDOM1 TOLOWER

service1 WDOM1 TUXDOM2 TOLOWER2

Table 19–2 Example of Incorrectly Configured Load Balancing

ResourceName LocalAccessPoint RemoteAccessPointList RemoteName

service1 WDOM1 TUXDOM1 TOLOWER

service1 WDOM1 TUXDOM1 TOLOWER

A

Capacity Planning A-1

ACapacity Planning

[21] This appendix provides an introduction to capacity planning. Capacity planning is the
process of determining what type of hardware and software configuration is required
to meet application needs adequately. Capacity planning is not an exact science. Every
application is different and every user behavior is different.

This appendix includes the following sections:

■ Section A.1, "Capacity Planning Factors"

■ Section A.2, "Assessing Your Application Performance Objectives"

■ Section A.3, "Hardware Tuning"

■ Section A.4, "Network Performance"

■ Section A.5, "Related Information"

A.1 Capacity Planning Factors
A number of factors influence how much capacity a given hardware configuration will
need in order to support a WebLogic Server instance and a given application. The
hardware capacity required to support your application depends on the specifics of
the application and configuration. You should consider how each of these factors
applies to your configuration and application.

The following sections discuss several of these factors. Understanding these factors
and considering the requirements of your application will aid you in generating server
hardware requirements for your configuration. Consider the capacity planning
questions in Table A–1.

Table A–1 Capacity Planning Factors and Information Reference

Capacity Planning Questions For Information, See:

Is WebLogic Server well-tuned? Section A.2, "Assessing Your Application
Performance Objectives"

How well-designed is the user application? Section A.1.5, "Database Server Capacity and
User Storage Requirements"

Is there enough bandwidth? Section A.1.7, "Network Load"

How many transactions need to run
simultaneously?

Section A.1.6, "Concurrent Sessions"

Is the database a limiting factor? Are there
additional user storage requirements?

Section A.1.5, "Database Server Capacity and
User Storage Requirements"

What is running on the machine in addition
to WebLogic Server?

Section A.1.7, "Network Load"

Capacity Planning Factors

A-2 Tuning Performance of Oracle WebLogic Server

A.1.1 Programmatic and Web-based Clients
Primarily, two types of clients can connect to WebLogic Server:

■ Web-based clients, such as Web browsers and HTTP proxies, use the HTTP or
HTTPS (secure) protocol to obtain HTML or servlet output.

■ Programmatic clients, such as Java applications and applets, can connect through
the T3 protocol and use RMI to connect to the server.

The stateless nature of HTTP requires that the server handle more overhead than is the
case with programmatic clients. However, the benefits of HTTP clients are numerous,
such as the availability of browsers and firewall compatibility, and are usually worth
the performance costs.

Programmatic clients are generally more efficient than HTTP clients because T3 does
more of the presentation work on the client side. Programmatic clients typically call
directly into EJBs while Web clients usually go through servlets. This eliminates the
work the server must do for presentation. The T3 protocol operates using sockets and
has a long-standing connection to the server.

A WebLogic Server installation that relies only on programmatic clients should be able
to handle more concurrent clients than an HTTP proxy that is serving installations. If
you are tunneling T3 over HTTP, you should not expect this performance benefit. In
fact, performance of T3 over HTTP is generally 15 percent worse than typical HTTP
and similarly reduces the optimum capacity of your WebLogic Server installation.

A.1.2 RMI and Server Traffic
What types of server traffic do the clients generate? If you are using T3 clients, most
interaction with the server involves Remote Method Invocation (RMI.) Clients using
RMI do not generate heavy traffic to the server because there is only one sender and
one listener.

RMI can use HTTP tunneling to allow RMI calls to traverse a firewall. RMI tunneled
through HTTP often does not deliver the higher degree of performance provided by
non-tunneled RMI.

A.1.3 SSL Connections and Performance
Secure sockets layer (SSL) is a standard for secure Internet communications. WebLogic
Server security services support X.509 digital certificates and access control lists
(ACLs) to authenticate participants and manage access to network services. For
example, SSL can protect JSP pages listing employee salaries, blocking access to
confidential information.

Do clients use SSL to connect to WebLogic
Server?

Section A.1.3, "SSL Connections and
Performance"

What types of traffic do the clients generate? Section A.1.2, "RMI and Server Traffic"

What types of clients connect to the
WebLogic Server application?

Section A.1.1, "Programmatic and Web-based
Clients"

Is your deployment configured for a cluster? Section A.1.8, "Clustered Configurations"

Are your servers configured for migration? Section A.1.9, "Server Migration"

Table A–1 (Cont.) Capacity Planning Factors and Information Reference

Capacity Planning Questions For Information, See:

Capacity Planning Factors

Capacity Planning A-3

SSL involves intensive computing operations. When supporting the cryptography
operations in the SSL protocol, WebLogic Server can not handle as many simultaneous
connections.

The number of SSL connections required out of the total number of clients required.
Typically, for every SSL connection that the server can handle, it can handle three
non-SSL connections. SSL substantially reduces the capacity of the server depending
upon the strength of encryption used in the SSL connections. Also, the amount of
overhead SSL imposes is related to how many client interactions have SSL enabled.
WebLogic Server includes native performance packs for SSL operations.

A.1.4 WebLogic Server Process Load
What is running on the machine in addition to a WebLogic Server? The machine may
be processing much more than presentation and business logic. For example, it could
be running a Web server or maintaining a remote information feed, such as a stock
information feed from a quote service.

Consider how much of your WebLogic Server machine's processing power is
consumed by processes unrelated to WebLogic Server. In the case in which WebLogic
Server (or the machine on which it resides) is doing substantial additional work, you
need to determine how much processing power will be drained by other processes.
When a Web server proxy is running on the same machine as WebLogic Server, expect
anywhere from 25 to 50 percent of the computing capacity.

A.1.5 Database Server Capacity and User Storage Requirements
Is the database a bottleneck? Are there additional user storage requirements? Often the
database server runs out of capacity much sooner that WebLogic Server does. Plan for
a database that is sufficiently robust to handle the application. Typically, a good
application's database requires hardware three to four times more powerful than the
application server hardware. It is good practice to use a separate machine for your
database server.

Generally, you can tell if your database is the bottleneck if you are unable to maintain
WebLogic Server CPU usage in the 85 to 95 percent range. This indicates that
WebLogic Server is often idle and waiting for the database to return results. With load
balancing in a cluster, the CPU utilization across the nodes should be about even.

Some database vendors are beginning to provide capacity planning information for
application servers. Frequently this is a response to the three-tier model for
applications.

An application might require user storage for operations that do not interact with a
database. For example, in a secure system disk and memory are required to store
security information for each user. You should calculate the size required to store one
user's information, and multiply by the maximum number of expected users.

A.1.6 Concurrent Sessions
How many transactions must run concurrently? Determine the maximum number of
concurrent sessions WebLogic Server will be called upon to handle. For each session,
you will need to add more RAM for efficiency. Oracle recommends that you install a
minimum of 256 MB of memory for each WebLogic Server installation that will be
handling more than minimal capacity.

Next, research the maximum number of clients that will make requests at the same
time, and how frequently each client will be making a request. The number of user

Capacity Planning Factors

A-4 Tuning Performance of Oracle WebLogic Server

interactions per second with WebLogic Server represents the total number of
interactions that should be handled per second by a given WebLogic Server
deployment. Typically for Web deployments, user interactions access JSP pages or
servlets. User interactions in application deployments typically access EJBs.

Consider also the maximum number of transactions in a given period to handle spikes
in demand. For example, in a stock report application, plan for a surge after the stock
market opens and before it closes. If your company is broadcasting a Web site as part
of an advertisement during the World Series or World Cup Soccer playoffs, you should
expect spikes in demand.

A.1.7 Network Load
Is the bandwidth sufficient? WebLogic Server requires enough bandwidth to handle all
connections from clients. In the case of programmatic clients, each client JVM will have
a single socket to the server. Each socket requires bandwidth. A WebLogic Server
handling programmatic clients should have 125 to 150 percent the bandwidth that a
server with Web-based clients would handle. If you are interested in the bandwidth
required to run a web server, you can assume that each 56kbps (kilobits per second) of
bandwidth can handle between seven and ten simultaneous requests depending upon
the size of the content that you are delivering. If you are handling only HTTP clients,
expect a similar bandwidth requirement as a Web server serving static pages.

The primary factor affecting the requirements for a LAN infrastructure is the use of
replicated sessions for servlets and stateful session EJBs. In a cluster, replicated
sessions are the biggest consumer of LAN bandwidth. Consider whether your
application will require the replication of session information for servlets and EJBs.

To determine whether you have enough bandwidth in a given deployment, look at the
network tools provided by your network operating system vendor. In most cases,
including Windows NT, Windows 2000, and Solaris, you can inspect the load on the
network system. If the load is very high, bandwidth may be a bottleneck for your
system.

A.1.8 Clustered Configurations
Clusters greatly improve efficiency and failover. Customers using clustering should
not see any noticeable performance degradation. A number of WebLogic Server
deployments in production involve placing a cluster of WebLogic Server instances on a
single multiprocessor server.

Large clusters performing replicated sessions for Enterprise JavaBeans (EJBs) or
servlets require more bandwidth than smaller clusters. Consider the size of session
data and the size of the cluster.

A.1.9 Server Migration
Are your servers configured for migration? Migration in WebLogic Server is the
process of moving a clustered WebLogic Server instance or a component running on a
clustered instance elsewhere in the event of failure. In the case of whole server
migration, the server instance is migrated to a different physical machine upon failure,
either manually or automatically.

For capacity planning in a production environment, keep in mind that server startup
during migration taxes CPU utilization. You cannot assume that because a machine
can handle x number of servers running concurrently that it also can handle that same
number of servers starting up on the same machine at the same time.

Network Performance

Capacity Planning A-5

A.1.10 Application Design
How well-designed is the application? WebLogic Server is a platform for user
applications. Badly designed or unoptimized user applications can drastically slow
down the performance of a given configuration from 10 to 50 percent. The prudent
course is to assume that every application that is developed for WebLogic Server will
not be optimal and will not perform as well as benchmark applications. Increase the
maximum capacity that you calculate or expect. See Section 3.1.7, "Tune Your
Application".

A.2 Assessing Your Application Performance Objectives
At this stage in capacity planning, you gather information about the level of activity
expected on your server, the anticipated number of users, the number of requests,
acceptable response time, and preferred hardware configuration. Capacity planning
for server hardware should focus on maximum performance requirements and set
measurable objectives for capacity.

The numbers that you calculate from using one of our sample applications are of
course just a rough approximation of what you may see with your application. There
is no substitute for benchmarking with the actual production application using
production hardware. In particular, your application may reveal subtle contention or
other issues not captured by our test applications.

A.3 Hardware Tuning
When you examine performance, a number of factors influence how much capacity a
given hardware configuration will need in order to support WebLogic Server and a
given application. The hardware capacity required to support your application
depends on the specifics of the application and configuration. You should consider
how each factor applies to your configuration and application.

A.3.1 Benchmarks for Evaluating Performance
The Standard Performance Evaluation Corporation, at http://www.spec.org, provides
a set of standardized benchmarks and metrics for evaluating computer system
performance.

A.3.2 Supported Platforms
See "Supported Configurations" in What's New in Oracle WebLogic Server 12.2.1 for links
to the latest certification information on the hardware/operating system platforms that
are supported for each release of WebLogic Server.

A.4 Network Performance
Network performance is affected when the supply of resources is unable to keep up
with the demand for resources. Today's enterprise-level networks are very fast and are
now rarely the direct cause of performance in well-designed applications. However, if
you find that you have a problem with one or more network components (hardware or
software), work with your network administrator to isolate and eliminate the problem.
You should also verify that you have an appropriate amount of network bandwidth
available for WebLogic Server and the connections it makes to other tiers in your
architecture, such as client and database connections. Therefore, it is important to

Related Information

A-6 Tuning Performance of Oracle WebLogic Server

continually monitor your network performance to troubleshoot potential performance
bottlenecks.

A.4.1 Determining Network Bandwidth
A common definition of bandwidth is "the rate of the data communications
transmission, usually measured in bits-per-second, which is the capacity of the link to
send and receive communications." A machine running WebLogic Server requires
enough network bandwidth to handle all WebLogic Server client connections. In the
case of programmatic clients, each client JVM has a single socket to the server, and
each socket requires dedicated bandwidth. A WebLogic Server instance handling
programmatic clients should have 125–150 percent of the bandwidth that a similar
Web server would handle. If you are handling only HTTP clients, expect a bandwidth
requirement similar to a Web server serving static pages.

To determine whether you have enough bandwidth in a given deployment, you can
use the network monitoring tools provided by your network operating system vendor
to see what the load is on the network system. You can also use common operating
system tools, such as the netstat command for Solaris or the System Monitor
(perfmon) for Windows, to monitor your network utilization. If the load is very high,
bandwidth may be a bottleneck for your system.

Also monitor the amount of data being transferred across the your network by
checking the data transferred between the application and the application server, and
between the application server and the database server. This amount should not
exceed your network bandwidth; otherwise, your network becomes the bottleneck. To
verify this, monitor the network statistics for retransmission and duplicate packets, as
follows:

netstat -s -P tcp

A.5 Related Information
The Oracle Technology Network provides detailed documentation for WebLogic
Server. See
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.
html.

Information on topics related to capacity planning is available from numerous
third-party software sources.

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Performance Features of this Release

	2 Top Tuning Recommendations for WebLogic Server
	2.1 Tune Pool Sizes
	2.2 Use the Prepared Statement Cache
	2.3 Use Logging Last Resource Optimization
	2.4 Tune Connection Backlog Buffering
	2.5 Use Optimistic or Read-only Concurrency
	2.6 Use Local Interfaces
	2.7 Use eager-relationship-caching
	2.8 Tune HTTP Sessions
	2.9 Tune Messaging Applications

	3 Performance Tuning Roadmap
	3.1 Performance Tuning Roadmap
	3.1.1 Understand Your Performance Objectives
	3.1.2 Measure Your Performance Metrics
	3.1.3 Monitor Disk and CPU Utilization
	3.1.4 Monitor Data Transfers Across the Network
	3.1.5 Locate Bottlenecks in Your System
	3.1.6 Minimize Impact of Bottlenecks
	3.1.7 Tune Your Application
	3.1.8 Tune your DB
	3.1.9 Tune WebLogic Server Performance Parameters
	3.1.10 Tune Your JVM
	3.1.11 Tune the Operating System
	3.1.12 Achieve Performance Objectives

	3.2 Tuning Tips

	4 Tuning Java Virtual Machines (JVMs)
	4.1 JVM Tuning Considerations
	4.2 Changing To a Different JVM
	4.3 Garbage Collection
	4.3.1 VM Heap Size and Garbage Collection
	4.3.2 Choosing a Garbage Collection Scheme
	4.3.3 Using Verbose Garbage Collection to Determine Heap Size
	4.3.4 Specifying Heap Size Values
	4.3.5 Tuning Tips for Heap Sizes
	4.3.6 Java HotSpot VM Heap Size Options
	4.3.6.1 Other Java HotSpot VM Options

	4.3.7 Automatically Logging Low Memory Conditions
	4.3.8 Manually Requesting Garbage Collection
	4.3.9 Requesting Thread Stacks

	4.4 Increasing Java Heap Size for Managed Servers
	4.4.1 Using the Administration Console to Set Java Heap Size
	4.4.2 Modify the startManagedWebLogic Script to Set Java Heap Size
	4.4.3 Using the Command Line to Set Java Heap Size
	4.4.4 Determining the Memory Values Used by a Managed Server

	5 Tuning WebLogic Diagnostic Framework and Java Flight Recorder Integration
	5.1 Using Java Flight Recorder
	5.2 Using WLDF
	5.3 Tuning Considerations

	6 Tuning WebLogic Server
	6.1 Setting Java Parameters for Starting WebLogic Server
	6.2 Development vs. Production Mode Default Tuning Values
	6.3 Deployment
	6.3.1 On-demand Deployment of Internal Applications
	6.3.2 Use FastSwap Deployment to Minimize Redeployment Time
	6.3.3 Generic Overrides

	6.4 Thread Management
	6.4.1 Tuning a Work Manager
	6.4.2 How Many Work Managers are Needed?
	6.4.3 What are the SLA Requirements for Each Work Manager?
	6.4.4 Understanding the Differences Between Work Managers and Execute Queues
	6.4.5 Migrating from Previous Releases
	6.4.6 Tuning the Stuck Thread Detection Behavior

	6.5 Tuning Network I/O
	6.5.1 Tuning Muxers
	6.5.1.1 Non-Blocking IO Muxer
	6.5.1.2 Other Muxers
	6.5.1.2.1 Native Muxers
	6.5.1.2.2 Java Muxer

	6.5.2 Network Channels
	6.5.3 Reducing the Potential for Denial of Service Attacks
	6.5.3.1 Tuning Message Size
	6.5.3.2 Tuning Complete Message Timeout
	6.5.3.3 Tuning Number of File Descriptors

	6.5.4 Tuning Connection Backlog Buffering
	6.5.5 Tuning Cached Connections

	6.6 Multitenancy Tuning Recommendations
	6.7 Optimize Java Expressions
	6.8 Using WebLogic Server Clusters to Improve Performance
	6.8.1 Scalability and High Availability
	6.8.2 How to Ensure Scalability for WebLogic Clusters
	6.8.2.1 Database Bottlenecks
	6.8.2.2 Session Replication
	6.8.2.3 Asynchronous HTTP Session Replication
	6.8.2.3.1 Asynchronous HTTP Session Replication using a Secondary Server
	6.8.2.3.2 Asynchronous HTTP Session Replication using a Database

	6.8.2.4 Invalidation of Entity EJBs
	6.8.2.5 Invalidation of HTTP sessions
	6.8.2.6 JNDI Binding, Unbinding and Rebinding

	6.8.3 Running Multiple Server Instances on Multi-Core Machines
	6.8.4 Improving Cluster Throughput using XA Transaction Cluster Affinity

	6.9 Monitoring a WebLogic Server Domain
	6.9.1 Using the Administration Console to Monitor WebLogic Server
	6.9.2 Using the WebLogic Diagnostic Framework
	6.9.3 Using JMX to Monitor WebLogic Server
	6.9.4 Using WLST to Monitor WebLogic Server
	6.9.5 Resources to Monitor WebLogic Server

	6.10 Tuning Class and Resource Loading
	6.10.1 Filtering Loader Mechanism
	6.10.2 Class Caching

	6.11 SSL Considerations

	7 Tuning the WebLogic Persistent Store
	7.1 Overview of Persistent Stores
	7.1.1 Using the Default Persistent Store
	7.1.2 Using Custom File Stores and JDBC Stores
	7.1.3 Using a JDBC TLOG Store
	7.1.4 Using JMS Paging Stores
	7.1.4.1 Using Flash Storage to Page JMS Messages

	7.1.5 Using Diagnostic Stores

	7.2 Best Practices When Using Persistent Stores
	7.3 Tuning JDBC Stores
	7.4 Tuning File Stores
	7.4.1 Basic Tuning Information
	7.4.2 Tuning a File Store Direct-Write-With-Cache Policy
	7.4.2.1 Using Flash Storage to Increase Performance
	7.4.2.2 Additional Considerations

	7.4.3 Tuning the File Store Direct-Write Policy
	7.4.4 Tuning the File Store Block Size
	7.4.4.1 Setting the Block Size for a File Store
	7.4.4.2 Determining the File Store Block Size
	7.4.4.3 Determining the File System Block Size
	7.4.4.4 Converting a Store with Pre-existing Files

	7.5 Using a Network File System
	7.5.1 Configuring Synchronous Write Policies
	7.5.2 Test Server Restart Behavior
	7.5.3 Handling NFS Locking Errors
	7.5.3.1 Solution 1 - Copying Data Files to Remove NFS Locks
	7.5.3.2 Solution 2 - Disabling File Locks in WebLogic Server File Stores
	7.5.3.2.1 Disabling File Locking for the Default File Store
	7.5.3.2.2 Disabling File Locking for a Custom File Store
	7.5.3.2.3 Disabling File Locking for a JMS Paging File Store
	7.5.3.2.4 Disabling File Locking for a Diagnostics File Store

	8 DataBase Tuning
	8.1 General Suggestions
	8.2 Database-Specific Tuning
	8.2.1 Oracle
	8.2.2 Microsoft SQL Server
	8.2.3 Sybase

	9 Tuning WebLogic Server EJBs
	9.1 General EJB Tuning Tips
	9.2 Tuning EJB Caches
	9.2.1 Tuning the Stateful Session Bean Cache
	9.2.2 Tuning the Entity Bean Cache
	9.2.2.1 Transaction-Level Caching
	9.2.2.2 Caching between Transactions
	9.2.2.3 Ready Bean Caching

	9.2.3 Tuning the Query Cache

	9.3 Tuning EJB Pools
	9.3.1 Tuning the Stateless Session Bean Pool
	9.3.2 Tuning the MDB Pool
	9.3.3 Tuning the Entity Bean Pool

	9.4 CMP Entity Bean Tuning
	9.4.1 Use Eager Relationship Caching
	9.4.1.1 Using Inner Joins

	9.4.2 Use JDBC Batch Operations
	9.4.3 Tuned Updates
	9.4.4 Using Field Groups
	9.4.5 include-updates
	9.4.6 call-by-reference
	9.4.7 Bean-level Pessimistic Locking
	9.4.8 Concurrency Strategy

	9.5 Tuning In Response to Monitoring Statistics
	9.5.1 Cache Miss Ratio
	9.5.2 Lock Waiter Ratio
	9.5.3 Lock Timeout Ratio
	9.5.4 Pool Miss Ratio
	9.5.5 Destroyed Bean Ratio
	9.5.6 Pool Timeout Ratio
	9.5.7 Transaction Rollback Ratio
	9.5.8 Transaction Timeout Ratio

	10 Tuning Message-Driven Beans
	10.1 Use Transaction Batching
	10.2 MDB Thread Management
	10.2.1 Determining the Number of Concurrent MDBs
	10.2.2 Selecting a Concurrency Strategy
	10.2.3 Thread Utilization When Using WebLogic Destinations
	10.2.4 Limitations for Multi-threaded Topic MDBs

	10.3 Best Practices for Configuring and Deploying MDBs Using Distributed Topics
	10.4 Using MDBs with Foreign Destinations
	10.4.1 Concurrency for MDBs that Process Messages from Foreign Destinations
	10.4.2 Thread Utilization for MDBs that Process Messages from Foreign Destinations

	10.5 Token-based Message Polling for Transactional MDBs Listening on Queues/Topics
	10.6 Compatibility for WLS 10.0 and Earlier-style Polling

	11 Tuning Data Sources
	11.1 Tune the Number of Database Connections
	11.2 Waste Not
	11.3 Use Test Connections on Reserve with Care
	11.4 Cache Prepared and Callable Statements
	11.5 Using Pinned-To-Thread Property to Increase Performance
	11.6 Database Listener Timeout under Heavy Server Loads
	11.7 Disable Wrapping of Data Type Objects
	11.8 Advanced Configurations for Oracle Drivers and Databases
	11.9 Use Best Design Practices

	12 Tuning Transactions
	12.1 Global Transaction Tuning
	12.2 XA Transaction Cluster Affinity
	12.3 Logging Last Resource Transaction Optimization
	12.3.1 LLR Tuning Guidelines

	12.4 Read-only, One-Phase Commit Optimizations
	12.5 Configure XA Transactions without TLogs

	13 Tuning WebLogic JMS
	13.1 JMS Performance & Tuning Check List
	13.2 Handling Large Message Backlogs
	13.2.1 Improving Message Processing Performance
	13.2.2 Controlling Message Production
	13.2.2.1 Drawbacks to Controlling Message Production

	13.3 Cache and Re-use Client Resources
	13.4 Tuning Distributed Queues
	13.5 Tuning Topics
	13.5.1 Tuning Non-durable Topic Publishers

	13.6 Tuning for Large Messages
	13.7 Defining Quota
	13.7.1 Quota Resources
	13.7.2 Destination-Level Quota
	13.7.3 JMS Server-Level Quota

	13.8 Blocking Senders During Quota Conditions
	13.8.1 Defining a Send Timeout on Connection Factories
	13.8.2 Specifying a Blocking Send Policy on JMS Servers

	13.9 Tuning MessageMaximum
	13.9.1 Tuning MessageMaximum Limitations

	13.10 Setting Maximum Message Size for Network Protocols
	13.11 Compressing Messages
	13.12 Paging Out Messages To Free Up Memory
	13.12.1 Specifying a Message Paging Directory
	13.12.2 Tuning the Message Buffer Size Option

	13.13 Controlling the Flow of Messages on JMS Servers and Destinations
	13.13.1 How Flow Control Works
	13.13.2 Configuring Flow Control
	13.13.3 Flow Control Thresholds

	13.14 Handling Expired Messages
	13.14.1 Defining a Message Expiration Policy
	13.14.2 Configuring an Expiration Policy on Topics
	13.14.3 Configuring an Expiration Policy on Queues
	13.14.4 Configuring an Expiration Policy on Templates
	13.14.5 Defining an Expiration Logging Policy
	13.14.6 Expiration Log Output Format
	13.14.7 Tuning Active Message Expiration
	13.14.8 Configuring a JMS Server to Actively Scan Destinations for Expired Messages

	13.15 Tuning Applications Using Unit-of-Order
	13.15.1 Best Practices
	13.15.2 Using UOO and Distributed Destinations
	13.15.3 Migrating Old Applications to Use UOO

	13.16 Using One-Way Message Sends
	13.16.1 Configure One-Way Sends On a Connection Factory
	13.16.2 One-Way Send Support In a Cluster With a Single Destination
	13.16.3 One-Way Send Support In a Cluster With Multiple Destinations
	13.16.4 When One-Way Sends Are Not Supported
	13.16.5 Different Client and Destination Hosts
	13.16.6 XA Enabled On Client's Host Connection Factory
	13.16.7 Higher QOS Detected
	13.16.8 Destination Quota Exceeded
	13.16.9 Change In Server Security Policy
	13.16.10 Change In JMS Server or Destination Status
	13.16.11 Looking Up Logical Distributed Destination Name
	13.16.12 Hardware Failure
	13.16.13 One-Way Send QOS Guidelines

	13.17 Tuning the Messaging Performance Preference Option
	13.17.1 Messaging Performance Configuration Parameters
	13.17.2 Compatibility With the Asynchronous Message Pipeline

	13.18 Client-side Thread Pools
	13.19 Best Practices for JMS .NET Client Applications
	13.20 Considerations for Oracle Data Guard Environments
	13.20.1 Pause Destinations for Planned Down Time
	13.20.2 Migrate JMS Services for Unexpected Outages

	14 Tuning WebLogic JMS Store-and-Forward
	14.1 Best Practices for JMS SAF
	14.2 Tuning Tips for JMS SAF

	15 Tuning WebLogic Message Bridge
	15.1 Best Practices
	15.2 Changing the Batch Size
	15.3 Changing the Batch Interval
	15.4 Changing the Quality of Service
	15.5 Using Multiple Bridge Instances
	15.6 Changing the Thread Pool Size
	15.7 Avoiding Durable Subscriptions
	15.8 Co-locating Bridges with Their Source or Target Destination
	15.9 Changing the Asynchronous Mode Enabled Attribute
	15.10 Tuning Environments with Many Bridges

	16 Tuning Resource Adapters
	16.1 Classloading Optimizations for Resource Adapters
	16.2 Connection Optimizations
	16.3 Thread Management
	16.4 InteractionSpec Interface

	17 Tuning Web Applications
	17.1 Best Practices
	17.1.1 Disable Page Checks
	17.1.2 Use Custom JSP Tags
	17.1.3 Precompile JSPs
	17.1.4 Use HTML Template Compression
	17.1.5 Use Service Level Agreements
	17.1.6 Related Reading

	17.2 Session Management
	17.2.1 Managing Session Persistence
	17.2.2 Minimizing Sessions
	17.2.3 Aggregating Session Data

	17.3 Pub-Sub Tuning Guidelines
	17.4 Enabling GZIP Compression

	18 Tuning Web Services
	18.1 Web Services Best Practices
	18.2 Tuning Web Service Reliable Messaging Agents
	18.3 Tuning Heavily Loaded Systems to Improve Web Service Performance
	18.3.1 Setting the Work Manager Thread Pool Minimum Size Constraint
	18.3.2 Setting the Buffering Sessions
	18.3.3 Releasing Asynchronous Resources

	19 Tuning WebLogic Tuxedo Connector
	19.1 Configuration Guidelines
	19.2 Best Practices
	A.1 Capacity Planning Factors
	A.1.1 Programmatic and Web-based Clients
	A.1.2 RMI and Server Traffic
	A.1.3 SSL Connections and Performance
	A.1.4 WebLogic Server Process Load
	A.1.5 Database Server Capacity and User Storage Requirements
	A.1.6 Concurrent Sessions
	A.1.7 Network Load
	A.1.8 Clustered Configurations
	A.1.9 Server Migration
	A.1.10 Application Design

	A.2 Assessing Your Application Performance Objectives
	A.3 Hardware Tuning
	A.3.1 Benchmarks for Evaluating Performance
	A.3.2 Supported Platforms

	A.4 Network Performance
	A.4.1 Determining Network Bandwidth

	A.5 Related Information

