Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Heavy neutrino searches through double-bang events at Super-Kamiokande, DUNE, and Hyper-Kamiokande

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 28 April 2022
  • Volume 2022, article number 174, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Heavy neutrino searches through double-bang events at Super-Kamiokande, DUNE, and Hyper-Kamiokande
Download PDF
  • M. C. Atkinson1,
  • Pilar Coloma2,
  • Ivan Martinez-Soler3,4,5,
  • Noemi Rocco3 &
  • …
  • Ian M. Shoemaker6 
  • 431 Accesses

  • 28 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

A variety of new physics scenarios allows for neutrinos to up-scatter into a heavy neutral lepton state. For a range of couplings and neutrino energies, the heavy neutrino may travel some distance before decaying to visible final states. When both the up-scattering and decay occur within the detector volume, these “double bang” events produce distinctive phenomenology with very low background. In this work, we first consider the current sensitivity at Super-Kamiokande via the atmospheric neutrino flux, and find current data may already provide new constraints. We then examine projected future sensitivity at DUNE and Hyper-Kamiokande, including both atmospheric and beam flux contributions to double-bang signals.

Article PDF

Download to read the full article text

Similar content being viewed by others

Neutrino Physics: Current State, Anomalies, Prospects

Article 01 April 2025

Neutrino Signals Throw Light on Dark Matter Searches

Chapter © 2023

Neutrino Oscillations: Status and Prospects

Article 16 August 2022

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • High-Energy Astrophysics
  • Meteoritics
  • Nuclear Physics
  • Particle Physics
  • Particle Astrophysics
  • Superheavy elements
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  2. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  3. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

  4. A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D.A. Bryman and R. Shrock, Improved Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, Phys. Rev. D 100 (2019) 053006 [arXiv:1904.06787] [INSPIRE].

  6. D.A. Bryman and R. Shrock, Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, Phys. Rev. D 100 (2019) 073011 [arXiv:1909.11198] [INSPIRE].

  7. M. Drewes and B. Garbrecht, Combining experimental and cosmological constraints on heavy neutrinos, Nucl. Phys. B 921 (2017) 250 [arXiv:1502.00477] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. P. Ballett, T. Boschi and S. Pascoli, Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector, JHEP 03 (2020) 111 [arXiv:1905.00284] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.M. Berryman, A. de Gouvêa, P.J. Fox, B.J. Kayser, K.J. Kelly and J.L. Raaf, Searches for Decays of New Particles in the DUNE Multi-Purpose Near Detector, JHEP 02 (2020) 174 [arXiv:1912.07622] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P. Coloma, E. Fernández-Martínez, M. González-López, J. Hernández-García and Z. Pavlovic, GeV-scale neutrinos: interactions with mesons and DUNE sensitivity, Eur. Phys. J. C 81 (2021) 78 [arXiv:2007.03701] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Breitbach, L. Buonocore, C. Frugiuele, J. Kopp and L. Mittnacht, Searching for physics beyond the Standard Model in an off-axis DUNE near detector, JHEP 01 (2022) 048 [arXiv:2102.03383] [INSPIRE].

    Article  ADS  Google Scholar 

  12. DELPHI collaboration, Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. 75 (1997) 580] [INSPIRE].

  13. J. Orloff, A.N. Rozanov and C. Santoni, Limits on the mixing of tau neutrino to heavy neutrinos, Phys. Lett. B 550 (2002) 8 [hep-ph/0208075] [INSPIRE].

  14. R. Plestid, Luminous solar neutrinos II: Mass-mixing portals, Phys. Rev. D 104 (2021) 075028 [arXiv:2010.09523] [INSPIRE].

  15. L.F. Li and F. Wilczek, Physical processes involving Majorana neutrinos, Phys. Rev. D 25 (1982) 143 [INSPIRE].

  16. A.B. Balantekin, A. de Gouvêa and B. Kayser, Addressing the Majorana vs. Dirac Question with Neutrino Decays, Phys. Lett. B 789 (2019) 488 [arXiv:1808.10518] [INSPIRE].

  17. R.E. Shrock, Electromagnetic Properties and Decays of Dirac and Majorana Neutrinos in a General Class of Gauge Theories, Nucl. Phys. B 206 (1982) 359 [INSPIRE].

  18. S.N. Gninenko, The MiniBooNE anomaly and heavy neutrino decay, Phys. Rev. Lett. 103 (2009) 241802 [arXiv:0902.3802] [INSPIRE].

  19. P. Coloma, P.A.N. Machado, I. Martinez-Soler and I.M. Shoemaker, Double-Cascade Events from New Physics in IceCube, Phys. Rev. Lett. 119 (2017) 201804 [arXiv:1707.08573] [INSPIRE].

  20. G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Dipole Portal to Heavy Neutral Leptons, Phys. Rev. D 98 (2018) 115015 [arXiv:1803.03262] [INSPIRE].

  21. I.M. Shoemaker and J. Wyenberg, Direct Detection Experiments at the Neutrino Dipole Portal Frontier, Phys. Rev. D 99 (2019) 075010 [arXiv:1811.12435] [INSPIRE].

  22. I.M. Shoemaker, Y.-D. Tsai and J. Wyenberg, Active-to-sterile neutrino dipole portal and the XENON1T excess, Phys. Rev. D 104 (2021) 115026 [arXiv:2007.05513] [INSPIRE].

  23. V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, JCAP 01 (2021) 039 [arXiv:2007.15563] [INSPIRE].

  24. R. Plestid, Luminous solar neutrinos I: Dipole portals, Phys. Rev. D 104 (2021) 075027 [arXiv:2010.04193] [INSPIRE].

  25. S. Vergani et al., Explaining the MiniBooNE excess through a mixed model of neutrino oscillation and decay, Phys. Rev. D 104 (2021) 095005 [arXiv:2105.06470] [INSPIRE].

  26. ArgoNeuT collaboration, Detection of Back-to-Back Proton Pairs in Charged-Current Neutrino Interactions with the ArgoNeuT Detector in the NuMI Low Energy Beam Line, Phys. Rev. D 90 (2014) 012008 [arXiv:1405.4261] [INSPIRE].

  27. ArgoNeuT collaboration, Demonstration of MeV-Scale Physics in Liquid Argon Time Projection Chambers Using ArgoNeuT, Phys. Rev. D 99 (2019) 012002 [arXiv:1810.06502] [INSPIRE].

  28. P. Coloma, Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment, JHEP 03 (2016) 016 [arXiv:1511.06357] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Shen, L.E. Marcucci, J. Carlson, S. Gandolfi and R. Schiavilla, Inclusive neutrino scattering off deuteron from threshold to GeV energies, Phys. Rev. C 86 (2012) 035503 [arXiv:1205.4337] [INSPIRE].

  30. O. Benhar and D. Meloni, Total neutrino and antineutrino nuclear cross-sections around 1-GeV, Nucl. Phys. A 789 (2007) 379 [hep-ph/0610403] [INSPIRE].

  31. Particle Data Group collaboration, Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

  32. P. Herczeg, C.M. Hoffman and H.V. Klapdor-Kleingrothaus eds., Physics beyond the standard model. Proceedings, 5th International WEIN Symposium, Santa Fe, U.S.A., 14–19 June 1998, World Scientific, Singapore (1999) [DOI].

  33. T. Leitner, O. Buss, L. Álvarez-Ruso and U. Mosel, Electron- and neutrino-nucleus scattering from the quasielastic to the resonance region, Phys. Rev. C 79 (2009) 034601 [arXiv:0812.0587] [INSPIRE].

  34. C. Mahaux and R. Sartor, Single-Particle Motion in Nuclei, pp. 1–223, Advances in Nuclear Physics, vol. 20, Springer, Boston, MA, U.S.A. (1991) [DOI].

  35. M.H. Mahzoon, R.J. Charity, W.H. Dickhoff, H. Dussan and S.J. Waldecker, Forging the link between nuclear reactions and nuclear structure, Phys. Rev. Lett. 112 (2014) 162503 [arXiv:1312.5209] [INSPIRE].

  36. W.H. Dickhoff, R.J. Charity and M.H. Mahzoon, Novel applications of the dispersive optical model, J. Phys. G 44 (2017) 033001 [arXiv:1606.08822] [INSPIRE].

  37. M.C. Atkinson et al., Dispersive optical model analysis of 208Pb generating a neutron-skin prediction beyond the mean field, Phys. Rev. C 101 (2020) 044303 [arXiv:1911.09020] [INSPIRE].

  38. G.L. Fogli, Neutrino induced deep inelastic scattering and the structure of the neutral current: a review and an updated analysis, Riv. Nuovo Cim. 9N8 (1986) 1 [INSPIRE].

  39. C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions: Second Edition, Princeton University Press, Princeton, U.S.A. (2013).

  40. T2K collaboration, Improved constraints on neutrino mixing from the T2K experiment with 3.13 × 1021 protons on target, Phys. Rev. D 103 (2021) 112008 [arXiv:2101.03779] [INSPIRE].

  41. K. Hasegawa et al., Performance and Status of the J-PARC Accelerators, in 9th International Particle Accelerator Conference, Vancouver, BC, Canada, 1 May 2018 [DOI].

  42. S. Igarashi, Challenges to Higher Beam Power in J-PARC: Achieved Performance and Future Prospects, in 10th International Particle Accelerator Conference, Melbourne, Australia, 19–24 May 2019 [DOI].

  43. P. Ballett, S.F. King, S. Pascoli, N.W. Prouse and T. Wang, Sensitivities and synergies of DUNE and T2HK, Phys. Rev. D 96 (2017) 033003 [arXiv:1612.07275] [INSPIRE].

  44. DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics, arXiv:2002.03005 [INSPIRE].

  45. M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].

  46. Super-Kamiokande collaboration, Solar Neutrino Measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010 [arXiv:1606.07538] [INSPIRE].

  47. C.A. Argüelles et al., New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter, Rept. Prog. Phys. 83 (2020) 124201 [arXiv:1907.08311] [INSPIRE].

  48. DUNE collaboration, The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies, arXiv:1807.10334 [INSPIRE].

  49. MicroBooNE collaboration, First measurement of νμ charged-current π0 production on argon with the MicroBooNE detector, Phys. Rev. D 99 (2019) 091102 [arXiv:1811.02700] [INSPIRE].

  50. CCFR collaboration, A Study of double vertex events in the neutrino-nucleon interactions, in Beyond the Standard Model III (Note change of dates from Jun 8–10) (1992) [INSPIRE].

  51. G. Cvetič, F. Halzen, C.S. Kim and S. Oh, Anomalies in (semi)-leptonic B decays B± → τ±ν, B± → Dτ±ν and B± → D*τ±ν, and possible resolution with sterile neutrino, Chin. Phys. C 41 (2017) 113102 [arXiv:1702.04335] [INSPIRE].

  52. Borexino collaboration, Neutrinos from the primary proton-proton fusion process in the Sun, Nature 512 (2014) 383 [INSPIRE].

  53. DONUT collaboration, A New upper limit for the tau-neutrino magnetic moment, Phys. Lett. B 513 (2001) 23 [hep-ex/0102026] [INSPIRE].

  54. ALEPH collaboration, Searches for new particles in Z decays using the ALEPH detector, Phys. Rept. 216 (1992) 253 [INSPIRE].

  55. S.N. Gninenko, A resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments, Phys. Rev. D 83 (2011) 015015 [arXiv:1009.5536] [INSPIRE].

  56. T. Schwetz, A. Zhou and J.-Y. Zhu, Constraining active-sterile neutrino transition magnetic moments at DUNE near and far detectors, JHEP 07 (2021) 200 [arXiv:2105.09699] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Theory Group, TRIUMF, Vancouver, BC, V6T2A3, Canada

    M. C. Atkinson

  2. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Calle Nicolas Cabrera 13–15, 28049, Madrid, Spain

    Pilar Coloma

  3. Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA

    Ivan Martinez-Soler & Noemi Rocco

  4. Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA

    Ivan Martinez-Soler

  5. Colegio de Física Fundamental e Interdisciplinaria de las Américas (COFI), 254 Norzagaray street, San Juan, 00901, Puerto Rico

    Ivan Martinez-Soler

  6. Center for Neutrino Physics, Department of Physics, Virginia Tech University, Blacksburg, VA, 24601, USA

    Ian M. Shoemaker

Authors
  1. M. C. Atkinson
    View author publications

    Search author on:PubMed Google Scholar

  2. Pilar Coloma
    View author publications

    Search author on:PubMed Google Scholar

  3. Ivan Martinez-Soler
    View author publications

    Search author on:PubMed Google Scholar

  4. Noemi Rocco
    View author publications

    Search author on:PubMed Google Scholar

  5. Ian M. Shoemaker
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Pilar Coloma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2105.09357

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, M.C., Coloma, P., Martinez-Soler, I. et al. Heavy neutrino searches through double-bang events at Super-Kamiokande, DUNE, and Hyper-Kamiokande. J. High Energ. Phys. 2022, 174 (2022). https://doi.org/10.1007/JHEP04(2022)174

Download citation

  • Received: 28 October 2021

  • Revised: 29 March 2022

  • Accepted: 08 April 2022

  • Published: 28 April 2022

  • Version of record: 28 April 2022

  • DOI: https://doi.org/10.1007/JHEP04(2022)174

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Neutrino Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature