Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Low-energy probes of sterile neutrino transition magnetic moments

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 December 2021
  • Volume 2021, article number 191, (2021)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Low-energy probes of sterile neutrino transition magnetic moments
Download PDF
  • O. G. Miranda1,
  • D. K. Papoulias  ORCID: orcid.org/0000-0003-0453-84922,
  • O. Sanders1,
  • M. Tórtola3,4 &
  • …
  • J. W. F. Valle4 
  • 602 Accesses

  • 47 Citations

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Sterile neutrinos with keV-MeV masses and non-zero transition magnetic moments can be probed through low-energy nuclear or electron recoil measurements. Here we determine the sensitivities of current and future searches, showing how they can probe a previously unexplored parameter region. Future coherent elastic neutrino-nucleus scattering (CEνNS) or elastic neutrino-electron scattering (EνES) experiments using a monochromatic 51Cr source can fully probe the region indicated by the recent XENON1T excess.

Article PDF

Download to read the full article text

Similar content being viewed by others

Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering

Article Open access 17 July 2019

Probing active-sterile neutrino transition magnetic moment on coherent elastic solar neutrino-nucleus scattering

Article Open access 03 January 2025

Coherent Elastic Neutrino-Nucleus Scattering: An Outlook on the Mechanism, Success and Applications of the Phenomenon

Chapter © 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Elementary Particles, Quantum Field Theory
  • Experimental Nuclear Physics
  • Magnetospheric Physics
  • Nuclear Physics
  • Particle Physics
  • Quantum Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

  2. A. Ioannisian and J. W. F. Valle, Light sterile neutrino from extra dimensions and four neutrino solutions to neutrino anomalies, Phys. Rev. D 63 (2001) 073002 [hep-ph/9911349] [INSPIRE].

  3. P. Chen, G.-J. Ding, A. D. Rojas, C. A. Vaquera-Araujo and J. W. F. Valle, Warped flavor symmetry predictions for neutrino physics, JHEP 01 (2016) 007 [arXiv:1509.06683] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. J. T. Peltoniemi, D. Tommasini and J. W. F. Valle, Reconciling dark matter and solar neutrinos, Phys. Lett. B 298 (1993) 383 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. T. Peltoniemi and J. W. F. Valle, Reconciling dark matter, solar and atmospheric neutrinos, Nucl. Phys. B 406 (1993) 409 [hep-ph/9302316] [INSPIRE].

  6. T. J. Allen, R. Johnson, S. Ranfone, J. Schechter and J. W. F. Valle, Simpson’s neutrino and the singular seesaw, Mod. Phys. Lett. A 6 (1991) 1967 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].

    Google Scholar 

  8. C. Giunti and T. Lasserre, eV-scale Sterile Neutrinos, Ann. Rev. Nucl. Part. Sci. 69 (2019) 163 [arXiv:1901.08330] [INSPIRE].

    Article  ADS  Google Scholar 

  9. B. Dasgupta and J. Kopp, Sterile Neutrinos, Phys. Rept. 928 (2021) 63 [arXiv:2106.05913] [INSPIRE].

    Article  Google Scholar 

  10. ArgoNeuT collaboration, New Constraints on Tau-Coupled Heavy Neutral Leptons with Masses mN = 280–970 MeV, Phys. Rev. Lett. 127 (2021) 121801 [arXiv:2106.13684] [INSPIRE].

  11. J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].

    Article  ADS  Google Scholar 

  13. E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  14. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

  15. M. Drewes, Y. Georis and J. Klarić, Mapping the viable parameter space for testable leptogenesis, arXiv:2106.16226 [INSPIRE].

  16. J. Schechter and J. W. F. Valle, Majorana Neutrinos and Magnetic Fields, Phys. Rev. D 24 (1981) 1883 [Erratum ibid. 25 (1982) 283] [INSPIRE].

  17. L. F. Li and F. Wilczek, Physical processes involving Majorana neutrinos, Phys. Rev. D 25 (1982) 143 [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. F. Nieves, Electromagnetic Properties of Majorana Neutrinos, Phys. Rev. D 26 (1982) 3152 [INSPIRE].

    Article  ADS  Google Scholar 

  19. B. Kayser, Majorana Neutrinos and their Electromagnetic Properties, Phys. Rev. D 26 (1982) 1662 [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. E. Shrock, Electromagnetic Properties and Decays of Dirac and Majorana Neutrinos in a General Class of Gauge Theories, Nucl. Phys. B 206 (1982) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  21. O. G. Miranda, T. I. Rashba, A. I. Rez and J. W. F. Valle, Constraining the neutrino magnetic moment with anti-neutrinos from the sun, Phys. Rev. Lett. 93 (2004) 051304 [hep-ph/0311014] [INSPIRE].

  22. O. G. Miranda, T. I. Rashba, A. I. Rez and J. W. F. Valle, Enhanced solar anti-neutrino flux in random magnetic fields, Phys. Rev. D 70 (2004) 113002 [hep-ph/0406066] [INSPIRE].

  23. O. G. Miranda, D. K. Papoulias, M. Tórtola and J. W. F. Valle, XENON1T signal from transition neutrino magnetic moments, Phys. Lett. B 808 (2020) 135685 [arXiv:2007.01765] [INSPIRE].

    Article  Google Scholar 

  24. XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].

  25. V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, JCAP 01 (2021) 039 [arXiv:2007.15563] [INSPIRE].

    Article  ADS  Google Scholar 

  26. I. M. Shoemaker, Y.-D. Tsai and J. Wyenberg, An Active-to-Sterile Neutrino Transition Dipole Moment and the XENON1T Excess, arXiv:2007.05513 [INSPIRE].

  27. S. Karmakar and S. Pandey, XENON1T constraints on neutrino non-standard interactions, arXiv:2007.11892 [INSPIRE].

  28. P. Coloma, P. A. N. Machado, I. Martinez-Soler and I. M. Shoemaker, Double-Cascade Events from New Physics in IceCube, Phys. Rev. Lett. 119 (2017) 201804 [arXiv:1707.08573] [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola and J. W. F. Valle, On the description of nonunitary neutrino mixing, Phys. Rev. D 92 (2015) 053009 [Erratum ibid. 93 (2016) 119905] [arXiv:1503.08879] [INSPIRE].

  30. O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tórtola and J. W. F. Valle, Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos, Phys. Rev. D 102 (2020) 113014 [arXiv:2008.02759] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. V. Forero, C. Giunti, C. A. Ternes and M. Tortola, Nonunitary neutrino mixing in short and long-baseline experiments, Phys. Rev. D 104 (2021) 075030 [arXiv:2103.01998] [INSPIRE].

    Article  ADS  Google Scholar 

  32. T. S. Kosmas, D. K. Papoulias, M. Tortola and J. W. F. Valle, Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, Phys. Rev. D 96 (2017) 063013 [arXiv:1703.00054] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. McKeen and M. Pospelov, Muon Capture Constraints on Sterile Neutrino Properties, Phys. Rev. D 82 (2010) 113018 [arXiv:1011.3046] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Dipole Portal to Heavy Neutral Leptons, Phys. Rev. D 98 (2018) 115015 [arXiv:1803.03262] [INSPIRE].

    Article  ADS  Google Scholar 

  35. COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].

  36. COHERENT collaboration, First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon, Phys. Rev. Lett. 126 (2021) 012002 [arXiv:2003.10630] [INSPIRE].

  37. TEXONO collaboration, Measurement of \( {\overline{v}}_e \)-Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].

  38. C. Bellenghi, D. Chiesa, L. Di Noto, M. Pallavicini, E. Previtali and M. Vignati, Coherent elastic nuclear scattering of 51 Cr neutrinos, Eur. Phys. J. C 79 (2019) 727 [arXiv:1905.10611] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. M. Link and X.-J. Xu, Searching for BSM neutrino interactions in dark matter detectors, JHEP 08 (2019) 004 [arXiv:1903.09891] [INSPIRE].

    Article  ADS  Google Scholar 

  40. P. Vogel and J. Engel, Neutrino Electromagnetic Form-Factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. F. Beacom and P. Vogel, Neutrino magnetic moments, flavor mixing, and the Super-Kamiokande solar data, Phys. Rev. Lett. 83 (1999) 5222 [hep-ph/9907383] [INSPIRE].

  42. W. Grimus, M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, Constraining Majorana neutrino electromagnetic properties from the LMA-MSW solution of the solar neutrino problem, Nucl. Phys. B 648 (2003) 376 [hep-ph/0208132] [INSPIRE].

  43. O. G. Miranda, D. K. Papoulias, M. Tórtola and J. W. F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP 07 (2019) 103 [arXiv:1905.03750] [INSPIRE].

    Article  ADS  Google Scholar 

  44. W. Grimus and T. Schwetz, Elastic neutrino electron scattering of solar neutrinos and potential effects of magnetic and electric dipole moments, Nucl. Phys. B 587 (2000) 45 [hep-ph/0006028] [INSPIRE].

  45. J. Barranco, O. G. Miranda and T. I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].

  46. D. K. Papoulias and T. S. Kosmas, Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments, Adv. High Energy Phys. 2015 (2015) 763648 [arXiv:1502.02928] [INSPIRE].

    Article  Google Scholar 

  47. D. K. Papoulias, T. S. Kosmas, R. Sahu, V. K. B. Kota and M. Hota, Constraining nuclear physics parameters with current and future COHERENT data, Phys. Lett. B 800 (2020) 135133 [arXiv:1903.03722] [INSPIRE].

    Article  Google Scholar 

  48. S. Klein and J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions, Phys. Rev. C 60 (1999) 014903 [hep-ph/9902259] [INSPIRE].

  49. J.-W. Chen, H.-C. Chi, C. P. Liu and C.-P. Wu, Low-energy electronic recoil in xenon detectors by solar neutrinos, Phys. Lett. B 774 (2017) 656 [arXiv:1610.04177] [INSPIRE].

    Article  ADS  Google Scholar 

  50. W. Grimus and P. Stöckinger, Effects of neutrino oscillations and neutrino magnetic moments on elastic neutrino-electron scattering, Phys. Rev. D 57 (1998) 1762 [hep-ph/9708279] [INSPIRE].

  51. D. Baxter et al., Recommended conventions for reporting results from direct dark matter searches, Eur. Phys. J. C 81 (2021) 907 [arXiv:2105.00599] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Boehm, D. G. Cerdeno, M. Fairbairn, P. A. N. Machado and A. C. Vincent, Light new physics in XENON1T, Phys. Rev. D 102 (2020) 115013 [arXiv:2006.11250] [INSPIRE].

    Article  ADS  Google Scholar 

  53. W. C. Louis, Searches for muon-to-electron (anti) neutrino flavor change, Prog. Part. Nucl. Phys. 63 (2009) 51 [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Konovalov, COHERENT at SNS and CsI[Na] effort update, talk at Magnificent CEvNS, Cyberspace, 16–20 November 2020 and online at https://indico.cern.ch/event/943069/contributions/4066385/.

  55. D. K. Papoulias, COHERENT constraints after the COHERENT-2020 quenching factor measurement, Phys. Rev. D 102 (2020) 113004 [arXiv:1907.11644] [INSPIRE].

    Article  ADS  Google Scholar 

  56. COHERENT collaboration, COHERENT collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].

  57. COHERENT collaboration, COHERENT collaboration data release from the first detection of coherent elastic neutrino-nucleus scattering on argon, arXiv:2006.12659 [INSPIRE].

  58. M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, E. Picciau and Y. Y. Zhang, Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data, Phys. Rev. D 102 (2020) 015030 [arXiv:2005.01645] [INSPIRE].

    Article  ADS  Google Scholar 

  59. G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    Article  ADS  Google Scholar 

  60. V. I. Kopeikin, L. A. Mikaelyan and V. V. Sinev, Spectrum of electronic reactor anti-neutrinos, Phys. Atom. Nucl. 60 (1997) 172 [Yad. Fiz. 60 (1997) 230] [INSPIRE].

  61. O. G. Miranda, D. K. Papoulias, M. Tórtola and J. W. F. Valle, Probing new neutral gauge bosons with C EνN S and neutrino-electron scattering, Phys. Rev. D 101 (2020) 073005 [arXiv:2002.01482] [INSPIRE].

    Article  ADS  Google Scholar 

  62. P. Coloma, P. Huber and J. M. Link, Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector, JHEP 11 (2014) 042 [arXiv:1406.4914] [INSPIRE].

    Article  ADS  Google Scholar 

  63. O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola and J. W. F. Valle, Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon, JHEP 05 (2020) 130 [Erratum JHEP 01 (2021) 067] [arXiv:2003.12050] [INSPIRE].

  64. D. Akimov et al., Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT, arXiv:2110.07730 [INSPIRE].

  65. COHERENT collaboration, Sensitivity of the COHERENT Experiment to Accelerator-Produced Dark Matter, Phys. Rev. D 102 (2020) 052007 [arXiv:1911.06422] [INSPIRE].

  66. MiniBooNE collaboration, A Search for Electron Neutrino Appearance at the ∆m2 ∼ 1 eV 2 Scale, Phys. Rev. Lett. 98 (2007) 231801 [arXiv:0704.1500] [INSPIRE].

  67. T. Schwetz, A. Zhou and J.-Y. Zhu, Constraining active-sterile neutrino transition magnetic moments at DUNE near and far detectors, JHEP 07 (2021) 200 [arXiv:2105.09699] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Atkinson, P. Coloma, I. Martinez-Soler, N. Rocco and I. M. Shoemaker, Heavy Neutrino searches through Double-Bang Events at Super-Kamiokande, DUNE, and Hyper-Kamiokande, arXiv:2105.09357 [INSPIRE].

  69. R. Plestid, Luminous solar neutrinos I: Dipole portals, arXiv:2010.04193 [INSPIRE].

  70. I. M. Shoemaker and J. Wyenberg, Direct Detection Experiments at the Neutrino Dipole Portal Frontier, Phys. Rev. D 99 (2019) 075010 [arXiv:1811.12435] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Ismail, S. Jana and R. M. Abraham, Neutrino Up-scattering via the Dipole Portal at Forward LHC Detectors, arXiv:2109.05032 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000, Distrito Federal, Mexico

    O. G. Miranda & O. Sanders

  2. Department of Physics, University of Ioannina, University Campus, 45110, Ioannina, GR, Greece

    D. K. Papoulias

  3. Departament de Física Teórica, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Spain

    M. Tórtola

  4. AHEP Group, Institut de Física Corpuscular, CSIC/Universitat de València, C/ Catedrático José Beltrán, 2, E-46980, Paterna, Spain

    M. Tórtola & J. W. F. Valle

Authors
  1. O. G. Miranda
    View author publications

    Search author on:PubMed Google Scholar

  2. D. K. Papoulias
    View author publications

    Search author on:PubMed Google Scholar

  3. O. Sanders
    View author publications

    Search author on:PubMed Google Scholar

  4. M. Tórtola
    View author publications

    Search author on:PubMed Google Scholar

  5. J. W. F. Valle
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to D. K. Papoulias.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2109.09545

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, O.G., Papoulias, D.K., Sanders, O. et al. Low-energy probes of sterile neutrino transition magnetic moments. J. High Energ. Phys. 2021, 191 (2021). https://doi.org/10.1007/JHEP12(2021)191

Download citation

  • Received: 28 September 2021

  • Revised: 08 November 2021

  • Accepted: 12 December 2021

  • Published: 27 December 2021

  • Version of record: 27 December 2021

  • DOI: https://doi.org/10.1007/JHEP12(2021)191

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • CP violation
  • Neutrino Physics
  • Solar and Atmospheric Neutrinos
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature