Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Intelligent & Robotic Systems
  3. Article

Wireless Communication-aware Path Planning and Multiple Robot Navigation Strategies for Assisted Inspections

  • Regular paper
  • Open access
  • Published: 07 June 2024
  • Volume 110, article number 88, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript
Wireless Communication-aware Path Planning and Multiple Robot Navigation Strategies for Assisted Inspections
Download PDF
  • André Cid  ORCID: orcid.org/0009-0003-7465-21751,2,
  • Arthur Vangasse1 na1,
  • Sofia Campos1 na1,
  • Mário Delunardo2,3 na1,
  • Gilmar Cruz Júnior1 na1,
  • Nilton Neto2,3 na1,
  • Luciano Pimenta1 na1,
  • Jacó Domingues2 na1,
  • Luiz Barros2 na1,
  • Hector Azpúrua1 na1,
  • Gustavo Pessin2 na1 &
  • …
  • Gustavo Freitas1 na1 
  • 1099 Accesses

  • 6 Citations

  • Explore all metrics

Abstract

Among the many challenges robots encounter in the mining industry, exploring confined environments receives significant attention. This work tackles problems associated with robot communication in hazardous and confined environments, where its cluttered and extensive nature frequently precludes traditional cable-based and wireless solutions. Our methods resort to off-the-shelf long-range radio frequencies to profile the signal propagation behaviour over the geometrical map to assist navigation algorithms that seek to preserve the connection. We consider mathematical models to predict signal power behaviour and serve as input to path planning. We also propose a semi-autonomous leader-follower scheme, with signal repeater units forming a mobile wireless network to enable inspection in hard-to-reach locations. Finally, we present a multi-robot connection-aware system, combining path planning based on radio signal power with multiple robot navigation. Results show the applicability of the proposed solutions, generating single and multi-robot paths for optimal signal reception based on power estimation, thus enabling operations in remote and isolated areas with no line-of-sight between the command base and the robotic inspection device. Experiments conducted in long corridors and in a representative mining environment using the EspeleoRobô and Pioneer platforms demonstrate significant improvements over the traditional communication methods for robotic operation regarding communication quality and inspection range limits.

Article PDF

Download to read the full article text

Similar content being viewed by others

Communication QoS-Aware Navigation of Autonomous Robots for Effective Coordination

Chapter © 2020

Adaptive Communication in Multi-robot Systems Using Directionality of Signal Strength

Chapter © 2016

Decentralized Multi-Agent Path Finding in Warehouse Environments for Fleets of Mobile Robots with Limited Communication Range

Chapter © 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Radio
  • Rehabilitation Robotics
  • Robotic Engineering
  • Robotics
  • Social Robotics
  • Wireless and Mobile Communication
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Code or Data Availability

Algorithms and data-sets can be made available upon acceptance and publication.

References

  1. Roberts, J.M., Duff, E.S., Corke, P.I., Sikka, P., Winstanley, G.J., Cunningham, J.: Autonomous control of underground mining vehicles using reactive navigation. In: Proceedings 2000 ICRA. Millennium Conference. IEEE In. Conf. Robot. Autom. Symposia Proceedings (Cat. No. 00CH37065), vol. 4, pp. 3790–3795 (2000). IEEE

  2. Thompson, E.A., McIntosh, C., Isaacs, J., Harmison, E., Sneary, R.: Robot communication link using 802.11 n or 900 MHz OFDM. J. Netw. Comput. Appl. 52, 37–51 (2015)

  3. Martz, J., Al-Sabban, W., Smith, R.N.: Survey of unmanned subterranean exploration, navigation, and localisation. IET Cyber-syst. Robot. 2(1), 1–13 (2020)

    Article  Google Scholar 

  4. Shapovalov, D., Pereira, G.A.S.: Tangle-free exploration with a tethered mobile robot. Remote Sensing 12(23), (2020) https://doi.org/10.3390/rs12233858

  5. Azpúrua, H., Rezende, A., Potje, G., Cruz Júnior, G.P., Fernandes, R., Miranda, V., Resende Filho, L.W., Domingues, J., Rocha, F., Sousa, F.L.M., Barros, L.G.D., Nascimento, E.R., Macharet, D.G., Pessin, G., Freitas, G.M.: Towards semi-autonomous robotic inspection and mapping in confined spaces with the EspeleoRobô. J. Intell. Robot. Syst. 101(4) (2021) https://doi.org/10.1007/s10846-021-01321-5

  6. Cid, A.L.M., Sathler, M.S., Delunardo, M., Domingues, J., Pessin, G., Azpúrual, H., Freitas, G.: Path planning for ground robots based on radio signal strength, 151–156 (2022) https://doi.org/10.1109/LARS/SBR/WRE56824.2022.9995861

  7. Diggelen, F.: Indoor gps theory & implementation, pp. 240–247 (2002). https://doi.org/10.1109/PLANS.2002.998914

  8. Chang, Y., Ebadi, K., Denniston, C.E., Ginting, M.F., Rosinol, A., Reinke, A., Palieri, M., Shi, J., Chatterjee, A., Morrell, B., Agha-mohammadi, A.-a., Carlone, L.: Lamp 2.0: A robust multi-robot slam system for operation in challenging large-scale underground environments. IEEE Robot. Autom. Lett. 7(4), 9175–9182 (2022) https://doi.org/10.1109/LRA.2022.3191204

  9. Ebadi, K., Palieri, M., Wood, S., Padgett, C., Agha-mohammadi, A.-a.: Dare-slam: degeneracy-aware and resilient loop closing in perceptually-degraded environments. J. Intell. Robot. Syst. 102, 1–25 (2021)

  10. Biswas, J., Veloso, M.: Wifi localization and navigation for autonomous indoor mobile robots. In: 2010 IEEE Int. Conf. Robot. Autom. pp. 4379–4384 (2010). https://doi.org/10.1109/ROBOT.2010.5509842

  11. Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP J. Adv. Signal Process. 2006, 1–11 (2006)

    Article  Google Scholar 

  12. Batalin, M.A., Sukhatme, G.S., Hattig, M.: Mobile robot navigation using a sensor network. In: IEEE In. Conf. Robot. Autom. 2004. Proceedings. ICRA ’04. 2004, vol. 1, pp. 636–6411 (2004). https://doi.org/10.1109/ROBOT.2004.1307220

  13. Li, H., Almeida, L., Carramate, F., Wang, Z., Sun, Y.: Connectivity-aware motion control among autonomous mobile units. In: 2008 International Symposium on Industrial Embedded Systems (SIES), pp. 155–162 (2008). https://doi.org/10.1109/SIES.2008.4577694

  14. Suh, J., Oh, S.: A cost-aware path planning algorithm for mobile robots. In: 2012 IEEE/RSJ Int. Conf. Intell. Robots Syst. pp. 4724–4729 (2012). https://doi.org/10.1109/IROS.2012.6386237

  15. Yang, H., Zhang, J., Song, S.H., Lataief, K.B.: Connectivity-aware UAV path planning with aerial coverage maps. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC) (2019). https://doi.org/10.1109/wcnc.2019.8886129.https://doi.org/10.1109/wcnc.2019.8886129

  16. Xie, H., Yang, D., Xiao, L., Lyu, J.: Connectivity-aware 3D UAV path design with deep reinforcement learning. IEEE Trans. Veh. Technol. 70(12), 13022–13034 (2021) https://doi.org/10.1109/TVT.2021.3121747

  17. Clark, L., Edlund, J.A., Net, M.S., Vaquero, T.S., Agha-mohammadi, A.-a.: PropEM-L: radio propagation environment modeling and learning for communication-aware multi-robot exploration (2022). https://doi.org/10.48550/ARXIV.2205.01267. arxiv.org/abs/2205.01267

  18. DARPA: DARPA Subterranean Challenge (2017). www.darpa.mil/program/darpa-subterranean-challenge Accessed 05 Mar 2024

  19. Ohradzansky, M., Rush, E., Riley, D., Mills, A., Ahmad, S., McGuire, S., Biggie, H., Harlow, K., Miles, M., Frew, E., Heckman, C., Humbert, J.: Multi-agent autonomy: advancements and challenges in subterranean exploration. Field Robotics 2, 1068–1104 (2022) https://doi.org/10.55417/fr.2022035

  20. Agha, A., Otsu, K., Morrell, B., Fan, D.D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., Edlund, J., et al.: Nebula: Quest for robotic autonomy in challenging environments; team costar at the darpa subterranean challenge. arXiv:2103.11470 (2021)

  21. Hudson, N., Talbot, F., Cox, M., Williams, J., Hines, T., Pitt, A., Wood, B., Frousheger, D., Lo Surdo, K., Molnar, T., Steindl, R., Wildie, M., Sa, I., Kottege, N., Stepanas, K., Hernandez, E., Catt, G., Docherty, W., Tidd, B., Arkin, R.: Heterogeneous ground and air platforms, homogeneous sensing: team csiro data61’s approach to the darpa subterranean challenge. Field Robotics 2, 595–636 (2022) https://doi.org/10.55417/fr.2022021

  22. Tranzatto, M., Mascarich, F., Bernreiter, L., Godinho, C., Camurri, M., Khattak, S., Dang, T., Reijgwart, V., Löje, J., Wisth, D., Zimmermann, S., Nguyen, H., Fehr, M., Solanka, L., Buchanan, R., Bjelonic, M., Khedekar, N., Valceschini, M., Jenelten, F., Alexis, K.: Cerberus: autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the darpa subterranean challenge. Field Robotics 2, 274–324 (2022) https://doi.org/10.55417/fr.2022011

  23. Vlavianos, A., Law, L.K., Broustis, I., Krishnamurthy, S.V., Faloutsos, M.: Assessing link quality in ieee 802.11 wireless networks: Which is the right metric?, 1–6 (2008) https://doi.org/10.1109/PIMRC.2008.4699837

  24. Rappaport, T.S., pp. –1641. Prentice Hall (1996)

  25. Krumm, J., Platt, J.: Minimizing calibration effort for an indoor 802.11 device location measurement system. Microsoft Research (2003)

  26. Zhao, H., Huang, B., Jia, B.: Applying kriging interpolation for wifi fingerprinting based indoor positioning systems, 1–6 (2016). IEEE

  27. Bi, J., Wang, Y., Cao, H., Qi, H., Liu, K., Xu, S.: A method of radio map construction based on crowdsourcing and interpolation for wi-fi positioning system, 1–6 (2018). IEEE

  28. Alonazi, A., Ma, Y., Tafazolli, R.: Delaunay Triangulation Based Interpolation for Radio Map Construction with Reduced Calibration, pp. 1–9 (2017). https://doi.org/10.1109/IEEEGCC.2017.8448199

  29. Talvitie, J., Renfors, M., Lohan, E.S.: Distance-based interpolation and extrapolation methods for rss-based localization with indoor wireless signals. IEEE Trans. Veh. Technol. 64(4), 1340–1353 (2015)

    Article  Google Scholar 

  30. Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kümmerle, R., Dornhege, C., Ruhnke, M., Kleiner, A., Tardös, J.D.: A comparison of slam algorithms based on a graph of relations. In: 2009 IEEE/RSJ Int. Conf. Intell. Robots Syst. pp. 2089–2095 (2009). https://doi.org/10.1109/IROS.2009.5354691

  31. Júnior, G.P.C., Rezende, A.M.C., Miranda, V.R.F., Fernandes, R., Azpúrua, H., Neto, A.A., Pessin, G., Freitas, G.M.: EKF-LOAM: An adaptive fusion of lidar slam with wheel odometry and inertial data for confined spaces with few geometric features. IEEE Trans. Autom. Sci. Eng. 19(3), 1458–1471 (2022) https://doi.org/10.1109/TASE.2022.3169442

  32. Shan, T., Englot, B.: Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 4758–4765 (2018). IEEE

  33. Rezende, A.M.C., Goncalves, V.M., Pimenta, L.C.A.: Constructive time-varying vector fields for robot navigation. IEEE Trans. Robot. 38(2), 852–867 (2022). https://doi.org/10.1109/TRO.2021.3093674

    Article  Google Scholar 

  34. Nunes, A.H., Rezende, A.M., Cruz, G.P., Freitas, G.M., Gonçalves, V.M., Pimenta, L.C.: Vector field for curve tracking with obstacle avoidance. In: 2022 IEEE 61st Conf. Decis. Control. (CDC), pp. 2031–2038 (2022). IEEE

  35. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: Ros: an open-source robot operating system. In: Proc. of the IEEE In. Conf. Robot. Autom. (ICRA) Workshop on Open Source Robotics, Kobe, Japan (2009)

Download references

Acknowledgements

This work was supported by the Instituto Tecnológico Vale (ITV), Vale S.A., Universidade Federal de Minas Gerais (UFMG) and Universidade Federal de Ouro Preto (UFOP). This work was also supported in part by the Brazilian agencies Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) through the Academic Excellence Program (PROEX)- Finance Code 001, under the grants FAPEMIG (Minas Gerais State Research Foundation) - APQ-02228-22, and APQ-00630-23, CNPq (Brazilian National Research Council) - 306423/2020-0, 309925/2023-1, 407063/2021-8, 310941/2023-7, and 303544/2023-6, and project INCT (National Institute of Science and Technology) under the grant CNPq 465755/2014-3 and FAPESP (São Paulo Research Foundation) 2014/50851-0.

Funding

Instituto Tecnológico Vale (ITV); Vale S.A.; Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Cientíıfico e Tecnológico (CNPq).

Author information

Author notes
  1. Arthur Vangasse, Sofia Campos, Mário Delunardo, Gilmar Cruz Júnior, Nilton Neto, Luciano Pimenta, Jacó Domingues, Luiz Barros, Hector Azpúrua, Gustavo Pessin and Gustavo Freitas contributed equally to this work.

Authors and Affiliations

  1. Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 31270-901, Minas Gerais, Belo Horizonte, Brazil

    André Cid, Arthur Vangasse, Sofia Campos, Gilmar Cruz Júnior, Luciano Pimenta, Hector Azpúrua & Gustavo Freitas

  2. Laboratório de Robótica, Controle e Instrumentação, Instituto Tecnológico Vale, 35400000, Minas Gerais, Ouro Preto, Brazil

    André Cid, Mário Delunardo, Nilton Neto, Jacó Domingues, Luiz Barros & Gustavo Pessin

  3. Programa de Pós-Graduação em Instrumentação, Controle e Automação de Processos de Mineração, Universidade Federal de Ouro Preto e Instituto Tecnológico Vale, 35400000, Minas Gerais, Ouro Preto, Brazil

    Mário Delunardo & Nilton Neto

Authors
  1. André Cid
    View author publications

    Search author on:PubMed Google Scholar

  2. Arthur Vangasse
    View author publications

    Search author on:PubMed Google Scholar

  3. Sofia Campos
    View author publications

    Search author on:PubMed Google Scholar

  4. Mário Delunardo
    View author publications

    Search author on:PubMed Google Scholar

  5. Gilmar Cruz Júnior
    View author publications

    Search author on:PubMed Google Scholar

  6. Nilton Neto
    View author publications

    Search author on:PubMed Google Scholar

  7. Luciano Pimenta
    View author publications

    Search author on:PubMed Google Scholar

  8. Jacó Domingues
    View author publications

    Search author on:PubMed Google Scholar

  9. Luiz Barros
    View author publications

    Search author on:PubMed Google Scholar

  10. Hector Azpúrua
    View author publications

    Search author on:PubMed Google Scholar

  11. Gustavo Pessin
    View author publications

    Search author on:PubMed Google Scholar

  12. Gustavo Freitas
    View author publications

    Search author on:PubMed Google Scholar

Contributions

General work conduction: André Cid and Gustavo Freitas; Conceptualization: Gustavo Pessin, Jacó Domingues, Luiz Barros, André Cid and Hector Azpúrua; Signal modeling: André Cid, Sofia Campos and Arthur Vangasse; Path planning: André Cid, Hector Azpúrua and Gustavo Freitas; Online SLAM: Gilmar Cruz Júnior and André Cid; Multiple robots setup: Sofia Campos, Arthur Vangasse, Gilmar Cruz Júnior, André Cid and Gustavo Freitas; Experimental methodology: André Cid, Mário Delunardo, Sofia Campos, Nilton Neto, Gilmar Cruz Júnior and Gustavo Freitas; Conceived images and graphics: André Cid, Arthur Vangasse, Gilmar Cruz Júnior, Sofia Campos and Mário Delunardo; Work supervision: Gustavo Freitas, Gustavo Pessin, Hector Azpúrua, Luiz Barros, Jacó Domingues and Luciano Pimenta; All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to André Cid.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflicts of Interest / Competing Interests

The authors declare no conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cid, A., Vangasse, A., Campos, S. et al. Wireless Communication-aware Path Planning and Multiple Robot Navigation Strategies for Assisted Inspections. J Intell Robot Syst 110, 88 (2024). https://doi.org/10.1007/s10846-024-02112-4

Download citation

  • Received: 17 June 2023

  • Accepted: 22 April 2024

  • Published: 07 June 2024

  • DOI: https://doi.org/10.1007/s10846-024-02112-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Radio signal-based path planning
  • Wireless communication
  • Robotic teleoperation
  • Multi-robot systems
  • Service robots
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Robotics in South America 2023

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature