Mathematics > Statistics Theory
[Submitted on 29 Dec 2021 (v1), last revised 14 Jun 2023 (this version, v3)]
Title:Total positivity in multivariate extremes
View PDFAbstract:Positive dependence is present in many real world data sets and has appealing stochastic properties that can be exploited in statistical modeling and in estimation. In particular, the notion of multivariate total positivity of order 2 ($ \mathrm{MTP}_{2} $) is a convex constraint and acts as an implicit regularizer in the Gaussian case. We study positive dependence in multivariate extremes and introduce $ \mathrm{EMTP}_{2} $, an extremal version of $ \mathrm{MTP}_{2} $. This notion turns out to appear prominently in extremes, and in fact, it is satisfied by many classical models. For a Hüsler--Reiss distribution, the analogue of a Gaussian distribution in extremes, we show that it is $ \mathrm{EMTP}_{2} $ if and only if its precision matrix is a Laplacian of a connected graph. We propose an estimator for the parameters of the Hüsler--Reiss distribution under $ \mathrm{EMTP}_{2} $ as the solution of a convex optimization problem with Laplacian constraint. We prove that this estimator is consistent and typically yields a sparse model with possibly nondecomposable extremal graphical structure. Applying our methods to a data set of Danube River flows, we illustrate this regularization and the superior performance compared to existing methods.
Submission history
From: Frank Röttger [view email][v1] Wed, 29 Dec 2021 18:35:02 UTC (71 KB)
[v2] Fri, 30 Sep 2022 12:15:42 UTC (80 KB)
[v3] Wed, 14 Jun 2023 12:41:07 UTC (75 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.