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Associative functions and statistical triangle inequalities
By B. SCHWEIZER (Tucson) and A. SKLAR (Chicago)

Introduction. In the course of our work on statistical metric spaces
[16, 17], we have been led to consider a class of real-valued 2-place func-
tions 7, whose domain is the closed unit square [0,1]<[0,1] and which
satisfy the following conditions:

0.1) T(0,0)=0, T(a,1)=T(l,a)=a. (Boundary conditions)
(0.2) T(a,b)=T(c,d), whenever a=c,b=d. (Monotonicity)

(0.3) T(a, b)=T(b, a). (Symmetry)

0.4) T(7(a, b), c)= T(a, T(b, ¢)). (Associativity)

These functions arise naturally in the study of generalized triangle inequali-
ties for statistical metric spaces; and, following K. MENGER [14], a function
which satisfies the conditions (0.1)—0.4) is called a triangular norm (briefly,
a t-norm).

Knowing whether a given generalized triangle inequality holds or does
not hold in some given statistical metric space can often be crucial. For this
reason, among others, it is important to know as much as possible about
f-norms and, in particular, to have a large repertoire of them at hand. What
is required, therefore, is a characterization of f-norms — a characterization
which will reveal their mutual relationships and enable us to construct
them at will.

In attacking this problem of characterization, it has turned out that the
most useful — and intrinsically the most interesting — property of {-norms
is their associativity (Condition (0.4)).") Now, associativity has been studied
in extenso from the algebraic point of view; and even the, by comparison,

1) This condition states that the f~-norm T defines a semigroup on the closed unit
interval |0, 1]. The other conditions further imply that this semigroup has a unit, 1, and
an annihilator, 0 (Condition (0. 1)); and that the semigroup operation is order-preserving
(Condition (0.2)) and commutative (Condition (0. 3)) [10]. Our central problem may thus
be restated as that of characterizing and constructing all semigroups on [0, 1] which have
these properties.
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neglected function-theoretic aspect of associativity, which departs from the

functional equation (0.4), can boast a distinguished roster of investigators

[1, 3, 7, 9, 13], headed by ABEL. As a result of their researches, there exists

today a means of characterizing in a simple manner, not, it is true, all

t-norms, but a large and important class of them. This is the class of strict

t-norms, which in addition to (0.1) and (0.4) satisfy the following con-

ditions:?)

(0.5) T is continuous (on [0, 1] < [0, 1]).

(0.6) T(a, b)<T(c,b), whenever O<a<c=1,
T(a,b)<T(a,d), whenever O<b<d=1.

Accordingly, in this paper we shall confine ourselves to a study of strict
t- norms (Part I) and their applications to statistical metric spaces (Part II).

(Strict monotonicity)

I. Associative functions

1. Preliminary theorems. The topics discussed in this paper take
as their starting point the following known theorems:

Theorem 1. Let [ be an open or half-open (but not closed) interval
of the real line and T a 2-place function from [ 1 to 1. Suppose that T is
continuous and strictly increasing in each of its places, i.e., that

T(a,b)<T(c,b), T(a,b)<T(a,d)

Jor all a,b,c,d in I such that a<c,b<d. Suppose further that T is asso-
ciative, i. e., satisfies the functional equation,

(1.1) T(7(a, b), )= T(a, T(b, ¢)),
for all a, b, c in I. Then there exists a 1-place function f, defined, continuous,

and strictly monotone on I, such that for all a,b in I, T(a, b) has the re-
presentation,

(1.2) T(a, b) = f*(f(a) +£(b)),

where f* is the inverse function of f.

Corollary. If T satisfies the hypotheses of Theorem 1, then T is sym-
metric, i.e., T(a, b)= T(b,a) for all a,b in I. Thus every continuous, strictly
increasing, associative function is symmetric.

2) It is clear that (0.6) implies (0.2). The fact that (0.4), (0.5) and (0.6), taken
together, imply (0. 3) is a direct consequence of an important theorem of ]. Aczér [3),
which is quoted in Section 1 of this paper.
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Theorem 2. [If, for a given T, f and g are both strictly monotone
solutions of (1.2), then there exists a number i such that g = if; conversely,
if for a given T, f is a (strictly monotone) solution of (1.2) and g=if,
for some number i, then g is a solution of (1.1) for this same T.

Theorem 3. (Converse of Theorem 1.) Let f be a continuous, strictly
monotonic 1-place function from the (open or half-open) interval I (= Dem f,
to the interval Ran f. Let f* be the inverse of f. Suppose further that Ran f
is closed under addition, i.e., that if x and y are both in Ran f then so is
x-+y. Then the 2-place function T which is given by (1.2) is defined, con-
tinuous, strictly increasing in each place, and associative on I 1.

The solution of (1.1), the functional equation of associativity, in the
form (1. 2) was first obtained — under the additional assumptions of com-
mutativity and differentiability — by ABEL in 1826. It is, in fact, the subject
of the first paper published by him in Crelle’s journal [1]. Further work
along these lines has since been done by L. E. J. BROUWER [7]. E. CARTAN
[9], J. AczeL (3], M. Hosszu [13] and T. S. MOTzKIN [15]. The form in which
we have stated Theorem 1 uses the weakest hypotheses thus far known to
be sufficient to guarantee the existence of the representation (1.2) and is
due to J. AczéL. We refer the reader to his interesting and elegant paper
[3] for the proof. Similarly, the statement of Theorem 2 may be found in
another paper by AczeL [4, p. 353], and its proof in a third [2] (Cf. also,
R. CaccioppoLr [8]).%)

Theorem 3 is very much simpler than Theorem 1 — its proof being
a mere matter of calculation. On the other hand, whereas the proof of The-
orem 1 makes essential use of many of the properties of the real number
system, Theorem 3 can readily be modified so as to apply to general ab-
stract semigroups. Our study of non-strict f~-norms (the results of which will
be presented in detail in a subsequent paper) has led — indeed, forced —
us to consider this modification. Here, our starting point is a group of the-
orems due to AL. C. CLimescu [11] on the transformation of semigroups
into semigroups. CLIMESCU’s results can be extended in several ways. And
these extensions, which are of interest in their own right, have, when spe-
cialized back to the case of associative functions on the reals, the effect of
giving us the conclusion of Theorem 3 under a considerably weakened set

%) Note added in proof: These theorems, their proofs and many other questions
connected with the functional equation of associativity are discussed in detail by ]. AczéL
in his recently published book, Vorlesungen iiber Funktionalgleichungen und ihre Anwen-
dungen, Basel und Stuttgart, 1961.
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of hypotheses. They thereby apply to, and yield, a large number of non-strict
t-norms.

2. The characterization of strict f-norms. Strict f-norms, as de-
fined in the introduction, satisfy all the hypotheses of Theorem 1, whence
we immediately have a representation of these f-norms in the form (1.2).
In this case, f is a continuous, strictly monotone function on the half-open
interval (0, 1]. Moreover, the presence of the boundary conditions (0. 1) allows
us to determine the behavior of any such f at the endpoints of this interval
as follows: The boundary condition 7'(a, 1)=a yields f(7(a, 1))= f(a). But

AT(a, 1)) =fIf"(fl@+ )] =f@)+1Q),
from which it follows that f(1) = 0. Next, in order to determine the behavior
of f near 0, suppose that lim f(a) = A. Then, upon imposing the condition

a-—»4
lim 7(a, a) =0, we obtain lim f(7(a, a)) = A. But, as above,
=il =)

A(T(a, @)) =111 (f(a) + f(@))] = 2/(a).
Consequently, l.iT A(T(a, a))=2 l_irfl f(a)=2A, whence A = 2A. Now A cannot

be zero, since f cannot assume the same value twice. Hence A is not finite.
The choice of A as 4o or —oc is at our disposal and, as a matter of
convenience, we shall consistently choose A= -+ oo. Consequently, the func-
tion f appearing in (1.2) decreases steadily from -+ o to O as its argument
increases from O to 1. Correspondingly, f*, the inverse of f, decreases ste-
adily from 1 to O as its argument increases from O to - oc. Summarizing,
we have

Theorem 4. If T is a strict t-norm, i.e., a 2-place function satisfying
the conditions (0.1), (0.4), (0.5) and (0.6), then there exists a 1-place func-
tion f, defined, continuous and strictly decreasing on the half-open interval
(0, 1], with Iirpf(a) = + oo, f(1)=0, and such that for any (a, b) in (0,1] x
w1 T

(2.1 T(a, b) =1 (f(a)+ f(b)),
where f* is the inverse of f.

Given 7, we shall call any function f that satisfies all the conditions
stated in Theorem 4 an additive generator of T. It follows that if f and g
are both additive generators of one and the same strict ~norm, then g =4f,
where 4 is a positive constant. Conversely, if f is a function which is de-
fined, continuous and strictly decreasing from -+ o to O on the interval
(0, 1), then f is an additive generator of a strict #~norm; and if 4 is a positive
constant then ZAf is an additive generator of the same f-norm.
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or determines its corresponding
[0, 1] < [0, 1]. However, this is a
boundary conditions (0. 1) imply
ver one or the other of its argument
be extended — either directly by
— 0 as to assume the correct
he unit square to which the re-
Thus a strict t-norm is completely
erators.

The following theorem is the multiplicative equivalent of Theorem 4:

Theorem 5. If T is a strict t-norm, then there exists a 1-place func-
tion h, defined, continuous and strictly increasing on the closed interval [0, 1],
with h(0)==0, h(1)=1, and such that for any (a,b) in [0,1] < [0, 1],

(2.2) T(a, b) = h*(h(a)-h(b)),
where h" is the inverse of h.

ProOF. In view of Theorem 4, an additive generator, f of 7 exists. Let
h be the function defined by,

(2.3) h=exp(—f)=e".
Then we have,
(2. 4) f=—logh, f*=h*'(e?), h*=f"(—log),

where h* is the inverse of A, and j is the identity function defined by:
j(x) == x, for any real number x. It follows that # and A* are both defined,
continuous and strictly increasing on the half-open interval (0, 1]. Further-
more, 7 and 2* may be extended by continuity to the closed interval [0, 1].
Both & and A* are strictly increasing on this interval and we find that
h(0)=h"(0)==0, h(1)=Ah*(1)=1, so that each of these functions maps the
closed unit interval onto itself. Lastly, in terms of 2 and A%, (2.1) takes the
form,
T(a, b) = K" [exp(—(— log h(a)—log h(B)))]
= h*[exp(log h(a)-+log h(b))]
— h*(h(a)-h(b)),

which is our desired result.

The function f completely determines the function A, and conversely.
Therefore a strict f-norm is as completely determined by the latter as by the
former. Accordingly, we call h a multiplicative generator of its corresponding
t-norm. Any two multiplicative generators of the same strict #-norm are po-
sitive powers of each other.










































