tensorflow和tensorflow2.0控制显存

tensorflow和tensorflow2.0控制显存

下面的方法可以控制tensorflow或keras实现显存自适应。

if tf.__version__.startswith('1.'):  # tensorflow 1
    config = tf.ConfigProto()  # allow_soft_placement=True
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
else:  # tensorflow 2
    tf.config.gpu.set_per_process_memory_growth(enabled=True)

第一个方法用于控制tensorflow 1.x版本使用自适应显存,避免显存独占。第二个方法用于控制tensorflow 2.x 使用自适应显存。

原文地址:https://doit-space.blog.csdn.net/article/details/102911328

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值