1.1监督学习
机器学习的第一种范式是监督学习(Supervised learning),学习的目标是根据输入预测输出的函数。例如,输入是患者的检查数据,输出是疾病的诊断结果;输入是动物图片,输出是它们的名称;输入是未来的某个日期,输出是该日的降雨量。输出值定性还是定量,对问题描述和所用学习方法影响很大,因而习惯上监督学习以其为标准分为两个主题。如果输出值是定性和离散的,监督学习称为分类(Classification),其输出值又称为类别,如患者某项疾病的诊断结果。如果输出值是定量的(常常是连续的),监督学习则称为回归(Regression),如对降雨量的预测。
1.1.1分类
让我们通过一个例子来认识分类。假设我是一家汽车卖场的老板,且拥有所有进入卖场的顾客的年龄和收入数据。我想预知某位顾客是否会买车。用监督学习的术语来说,就是根据顾客的年龄和收入对他们进行分类,一类是会买车的,一类是不会买车的。从函数的角度看,输入是顾客的年龄和收入,输出则是一个表明他是否会买车的值。为了得出该函数,监督学习必须具备大量训练所用的数据,其中的每个实例既包括输入ÿ