Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
注意:需要将相关的数据库驱动放到spark的类路径下。
mv mysql-connector-java-5.1.27-bin.jar /export/servers/spark/jars/
(1)启动spark-shell
bin/spark-shell
(2)从Mysql数据库加载数据方式一
val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:mysql://hadoop102:3306/rdd").option("dbtable", "donglin") .option("user", "root").option("password", "root").load()
查看
jdbcDF.show
(3)从Mysql数据库加载数据方式二
val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "root")
val jdbcDF2 = spark.read.jdbc("jdbc:mysql://hadoop102:3306/rdd", "donglin", connectionProperties)
(4)将数据写入Mysql方式一
jdbcDF.write.format("jdbc").option("url", "jdbc:mysql://hadoop102:3306/rdd").option("dbtable", "donglin").option("user", "root").option("password", "root").save()
这样可能会报错 视图已存在
解决方案 方式二也一样
jdbcDF.write.mode("append").format("jdbc").option("url", "jdbc:mysql://hadoop102:3306/rdd").option("dbtable", "donglin").option("user", "root").option("password", "root").save()
(5)将数据写入Mysql方式二
jdbcDF2.write
.jdbc("jdbc:mysql://hadoop102:3306/rdd", "donglin", connectionProperties)