布隆过滤器算法

文章介绍了布隆过滤器的关键参数,包括数据量(n)、预期失误率(p)、所需bit位(m)和哈希函数数量(k),并探讨了m/n与误判率的关系。当k固定时,m/n增大可降低误判率;反之,当m/n固定时,增大k会增加误判率。以100亿样本和0.0001的失误率为例,计算得出需要约22.3GB的空间和14个哈希函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

布隆过滤器主要有下面的参数:

1.假设数据量为n,预期的失误率为p(布隆过滤器大小和每个样本的大小无关)。
2.根据n和p,算出BloomFilter一共需要多少个bit位,向上取整,记为m。
3.根据m和n,算出BloomFilter需要多少个哈希函数,向上取整,记为k。
4.根据修正公式,算出真实的失误率p_true。
在这里插入图片描述

结论

当k固定的时候,m/n越大,误判率越小
当m/n固定的时候,k越大,误判率越大
布隆过滤器只和样本量和失误率有关,与单样本大小无关
这里贴一个参考资料中m/n、k和False Positive Rate之间的关系图:

在这里插入图片描述
在这里插入图片描述

举例

假设n为100亿,p=0.0001
m≈1917亿 1917亿/8/1024/1024/1024约等于22.3G
k=13.4≈14
如果要的空间大,比原本的失误率还要小(当k固定的时候,m/n越大,误判率越小)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knight_AL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值