# Official YOLOv7
Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
[](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new)
[](https://huggingface.co/spaces/akhaliq/yolov7)
<a href="https://colab.research.google.com/gist/AlexeyAB/b769f5795e65fdab80086f6cb7940dae/yolov7detection.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
[](https://arxiv.org/abs/2207.02696)
<div align="center">
<a href="./">
<img src="./figure/performance.png" width="79%"/>
</a>
</div>
## Web Demo
- Integrated into [Huggingface Spaces ����](https://huggingface.co/spaces/akhaliq/yolov7) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo [](https://huggingface.co/spaces/akhaliq/yolov7)
## Performance
MS COCO
| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch 1 fps | batch 32 average time |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
| [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
| | | | | | | |
| [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
| [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
| [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
| [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |
## Installation
Docker environment (recommended)
<details><summary> <b>Expand</b> </summary>
``` shell
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx
# pip install required packages
pip install seaborn thop
# go to code folder
cd /yolov7
```
</details>
## Testing
[`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt)
``` shell
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
```
You will get the results:
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868
```
To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip).
## Training
Data preparation
``` shell
bash scripts/get_coco.sh
```
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
Single GPU training
``` shell
# train p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
# train p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
```
Multiple GPU training
``` shell
# train p5 models
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
# train p6 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
```
## Transfer learning
[`yolov7_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt) [`yolov7x_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x_training.pt) [`yolov7-w6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6_training.pt) [`yolov7-e6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6_training.pt) [`yolov7-d6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6_training.pt) [`yolov7-e6e_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e_training.pt)
Single GPU finetuning for custom dataset
``` shell
# finetune p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml
# finetune p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml
```
## Re-parameterization
See [reparameterization.ipynb](tools/reparameterization.ipynb)
## Pose estimation
[`yolov7-w6-pose.pt`](https://github.com/WongKinYiu
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于yolov7实现卡车识别检测源码+训练好模型(9000多个卡车目标训练)+配置文件+评估指标曲线.zip 模型识别检测类别为1类 ['卡车'] 【模型介绍】 1.模型使用的是yolov7-tiny.yaml、hyp.scratch.custom.yam训练 2.模型使用高性能显卡+高质量数据集训练迭代200次得到,识别检测效果和评估指标曲线都不错,实际项目所用,不需要二次训练或者微调,可用作实际项目、课程实验作业、模型效果对比、毕业设计、课程设计等,请放心下载使用!
资源推荐
资源详情
资源评论





























收起资源包目录





































































































共 109 条
- 1
- 2
资源评论

- gottagetawayfromhere2023-07-31资源有很好的参考价值,总算找到了自己需要的资源啦。

onnx
- 粉丝: 1w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 单元测试革命:pFUnit科学计算代码验证方案.pdf
- 地球系统模型集成:Fortran-Python接口设计气象ML参数化.pdf
- 递归算法优化:Fortran尾递归转迭代避免栈溢出.pdf
- 递归优化指南:堆栈溢出预防与尾调用改造.pdf
- 动态数组进阶:自动扩容与内存池管理.pdf
- 动态链接库实战:Fortran共享库版本兼容性与符号导出.pdf
- 动态数组内存管理:Fortran2023可分配组件性能瓶颈突破.pdf
- 堆栈跟踪技术进阶:Fortran回溯符号解析与核心转储分析.pdf
- 多语言生态集成:Julia调用Fortran模块的互操作.pdf
- 防御式编程艺术:Fortran断言机制与异常链式处理最佳实践.pdf
- 电子商务文案入门必读.ppt
- 分子动力学加速:Fortran邻居列表算法缓存优化.pdf
- 毕设&课设:基于sklearn和Django的一个样例,可以通过http发送数据来进行预测.zip
- 毕设&课设:基于Scrapy和Django的二手房爬虫及可视化.zip
- HP服务器bios-时间设置确认.doc
- 分子动力学内存优化:邻居列表算法重构方案.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
