# MLPrecMerg: Machine learning (ML) based satellite-gauge precipitation merging approach
This is a MATLAB toolbox used to merge mutiple satellite-based precipiation and gauge observation based on a novel double machine learning (DML) approach.The DML approach was mainly developed based on the classification model of random forest (RF) in combination with the regression models of the machine learning (ML) algorithms including RF, artificial neural network (ANN), support vector machine (SVM) and extreme learning machine (ELM). This led to four DML algorithms, i.e., RF-RF, RF-ANN, RF-SVM, and RF-LM. The optimization of the hyperparamters of the ML algorithms were implemented through the parallel computing-based and grid-research (PC-GR).
The toolbox can be easily applied to other fields such as ground water level mapping, soil moisture and precipitation downscaling, hydrological predictions, among others. These can be done just by changing the input and output variables.
# Framework

# Usage
The codes in included in the folder Src. TheThe main program is 'Main_Merge_ensemble.m'. We have also uploaded the test data. The user can download the test data, and modify the root folder in the main program 'Main_Merge_ensemble.m'. Then the program can run directly. Note that the SVM algorithm is not a built-in matlab function, the users need to download and install the Libsvm package before running the program. Libsvm package can be downloaded from heree https://www.csie.ntu.edu.tw/~cjlin/libsvm/, The version of your Matlab might not be compatibile with the new version, if so, you can use the
olde version: https://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles/.
# Citation
> Please cite the program as follows:
Ling Zhang, Xin Li, Donghai Zheng, et al. 2021, Merging satellite-based precipitation and gauge observations using a novel double machine learning approach, Journal of Hydrology
https://doi.org/10.1016/j.jhydrol.2021.125969
# Contact me
Please feel free to contact me if you have any questions, [email protected]
没有合适的资源?快使用搜索试试~ 我知道了~
基于单双机器学习算法的多星测定与仪表观测融合.zip

共73个文件
m:43个
mat:16个
xlsx:9个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 48 浏览量
2025-09-16
16:30:25
上传
评论
收藏 1.35MB ZIP 举报
温馨提示
1.版本:matlab2014a/2019b/2024b 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论






























收起资源包目录


















































































共 73 条
- 1
资源评论



海神之光
- 粉丝: 6w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- h2o-app-3.22.0.2.jar
- fms-jvm-1.4.55-sources.jar
- service_2.11-0.0.103-javadoc.jar
- tock-nlp-front-shared-19.9.2-javadoc.jar
- tock-nlp-dialogflow-20.3.0-sources.jar
- braket-jvm-1.3.24-sources.jar
- codecatalyst-jvm-1.5.6-sources.jar
- cloudhsmv2-jvm-1.0.35-sources.jar
- wisp-config-2025.04.16.210958-554a97b-javadoc.jar
- pact-jvm-matchers_2.11-2.1.11-javadoc.jar
- cybrid-api-organization-kotlin-0.79.14-javadoc.jar
- appmesh-jvm-1.3.39-javadoc.jar
- ec2-jvm-1.4.74-sources.jar
- sparkling-water-scoring-package_2.12-3.44.0.3-1-3.5-sources.
- ec2-jvm-1.4.125-sources.jar
- appintegrations-jvm-1.3.88-sources.jar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
