# ClearML Integration
<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
## About ClearML
[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time â±ï¸.
ð¨ Track every YOLOv5 training run in the <b>experiment manager</b>
ð§ Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
ð¦ <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
ð¬ Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
ð Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
<br />
And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
<br />
<br />

<br />
<br />
## 𦾠Setting Things Up
To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
1. Install the `clearml` python package:
```bash
pip install clearml
```
1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
```bash
clearml-init
```
That's it! You're done ð
<br />
## ð Training YOLOv5 With ClearML
To enable ClearML experiment tracking, simply install the ClearML pip package.
```bash
pip install clearml>=1.2.0
```
This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager.
If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`.
PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
or with custom project and task name:
```bash
python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
This will capture:
- Source code + uncommitted changes
- Installed packages
- (Hyper)parameters
- Model files (use `--save-period n` to save a checkpoint every n epochs)
- Console output
- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
- General info such as machine details, runtime, creation date etc.
- All produced plots such as label correlogram and confusion matrix
- Images with bounding boxes per epoch
- Mosaic per epoch
- Validation images per epoch
- ...
That's a lot right? ð¤¯
Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
<br />
## ð Dataset Version Management
Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!

### Prepare Your Dataset
The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ LICENSE
|_ README.txt
```
But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
Next, â ï¸**copy the corresponding yaml file to the root of the dataset folder**â ï¸. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ coco128.yaml # <---- HERE!
|_ LICENSE
|_ README.txt
```
### Upload Your Dataset
To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command:
```bash
cd coco128
clearml-data sync --project YOLOv5 --name coco128 --folder .
```
The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
```bash
# Optionally add --parent <parent_dataset_id> if you want to base
# this version on another dataset version, so no duplicate files are uploaded!
clearml-data create --name coco128 --project YOLOv5
clearml-data add --files .
clearml-data close
```
### Run Training Using A ClearML Dataset
Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 ð models!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
```
<br />
## ð Hyperparameter Optimization
Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
```bash
# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
pip install optuna
python utils/loggers/clearml/hpo.py
```

## 𤯠Remote Execution (advanced)
Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access t
没有合适的资源?快使用搜索试试~ 我知道了~
Yolov5远距离识别手

共430个文件
txt:132个
jpg:131个
py:51个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 151 浏览量
2023-07-27
11:51:28
上传
评论
收藏 67.52MB ZIP 举报
温馨提示
python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 python detect.py --weights best.pt --source 0 使用
资源推荐
资源详情
资源评论























收起资源包目录





































































































共 430 条
- 1
- 2
- 3
- 4
- 5
资源评论



Acautoai
- 粉丝: 2w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 基于C的网络军棋设计说明.doc
- 酒店经营管理思路浅述.doc
- 加气块砌筑劳务分包合同.doc
- 基于人工智能实现简单图像识别基础教程
- 建材企业网站策划方案.doc
- 国家开放大学电大《关系营销》网络课判断题题库及答案.docx
- 互联网大健康专家讲座.pptx
- 股指期货投资报告.doc
- 计算机科学与编程导论课程设计参考题目及要求.doc
- 年级主任岗位职责.doc
- 天然防腐剂研究现状综述.docx
- CO-060成本核算.doc
- 秋季幼儿园园务工作计划3.doc
- 基于单片机的恒温箱温度控制系统毕业论文带pid控制.doc
- 基于EAI模式的银行应用系统集成------.pdf
- 物业公司客户服务部主管岗位职责.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
