.. _HISTORY:
=================
Old Release Notes
=================
Theano 1.0.3 (20th of September 2018)
=====================================
This is a maintenance release of Theano, version ``1.0.3``, with no
new features, but some important bug fixes.
We recommend that everybody update to this version.
Highlights (since 1.0.2):
- Theano is now compatible with Python 3.7
- Broadcasting for sparse dot products works correctly
- Subtensor grads do not return int anymore
A total of 5 people contributed to this release since ``1.0.2``:
- Frederic Bastien
- Arnaud Bergeron
- Dmitry Mottl
- Adrian Seyboldt
- Thomas Wiecki
Theano 1.0.2 (23rd of May, 2018)
====================================
This is a maintenance release of Theano, version ``1.0.2``, with no
new features, but some important bug fixes.
We recommend that everybody update to this version.
Highlights (since 1.0.1):
- Theano should work under PyPy now (this is experimental).
- Update for cuDNN 7.1 RNN API changes.
- Fix for a crash related to mixed dtypes with cuDNN convolutions.
- MAGMA should work in more cases without manual config.
- Handle reductions with non-default accumulator dtype better on the GPU.
- Improvements to the test suite so that it fails less often due to
random chance.
A total of 6 people contributed to this release since ``1.0.1``:
- Frederic Bastien
- Steven Bocco
- Jon Haygood
- Arnaud Bergeron
- Jordan Melendez
- Desiree Vogt-Lee
- Garming Sam
- Pascal Lamblin
- Vincent Dumoulin
- Glexin
- Simon Lefrancois
Theano 1.0.1 (6th of December, 2017)
====================================
This is a maintenance release of Theano, version ``1.0.1``, with no
new features, but some important bug fixes.
We recommend that everybody update to this version.
Highlights (since 1.0.0):
- Fixed compilation and improved float16 support for topK on GPU
- **NB**: topK support on GPU is experimental and may not work for
large input sizes on certain GPUs
- Fixed cuDNN reductions when axes to reduce have size ``1``
- Attempted to prevent re-initialization of the GPU in a child process
- Fixed support for temporary paths with spaces in Theano initialization
- Spell check pass on the documentation
A total of 6 people contributed to this release since ``1.0.0``:
- Frederic Bastien
- Steven Bocco
- Arnaud Bergeron
- Sam Johnson
- Edward Betts
- Simon Lefrancois
Theano 1.0.0 (15th of November, 2017)
=====================================
This is a final release of Theano, version ``1.0.0``, with a lot of
new features, interface changes, improvements and bug fixes.
We recommend that everybody update to this version.
Highlights (since 0.9.0):
- Announcing that `MILA will stop developing Theano <https://groups.google.com/d/msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ>`_
- conda packages now available and updated in our own conda channel ``mila-udem``
To install it: ``conda install -c mila-udem theano pygpu``
- Support NumPy ``1.13``
- Support pygpu ``0.7``
- Moved Python ``3.*`` minimum supported version from ``3.3`` to ``3.4``
- Added conda recipe
- Replaced deprecated package ``nose-parameterized`` with up-to-date package ``parameterized`` for Theano requirements
- Theano now internally uses ``sha256`` instead of ``md5`` to work on systems that forbid ``md5`` for security reason
- Removed old GPU backend ``theano.sandbox.cuda``. New backend ``theano.gpuarray`` is now the official GPU backend
- Make sure MKL uses GNU OpenMP
- **NB**: Matrix dot product (``gemm``) with ``mkl`` from conda
could return wrong results in some cases. We have reported the problem upstream
and we have a work around that raises an error with information about how to fix it.
- Improved elemwise operations
- Speed-up elemwise ops based on SciPy
- Fixed memory leaks related to elemwise ops on GPU
- Scan improvements
- Speed up Theano scan compilation and gradient computation
- Added meaningful message when missing inputs to scan
- Speed up graph toposort algorithm
- Faster C compilation by massively using a new interface for op params
- Faster optimization step, with new optional destroy handler
- Documentation updated and more complete
- Added documentation for RNNBlock
- Updated ``conv`` documentation
- Support more debuggers for ``PdbBreakpoint``
- Many bug fixes, crash fixes and warning improvements
A total of 71 people contributed to this release since 0.9.0, see list below.
Interface changes:
- Merged duplicated diagonal functions into two ops: ``ExtractDiag`` (extract a diagonal to a vector),
and ``AllocDiag`` (set a vector as a diagonal of an empty array)
- Removed op ``ExtractDiag`` from ``theano.tensor.nlinalg``, now only in ``theano.tensor.basic``
- Generalized ``AllocDiag`` for any non-scalar input
- Added new parameter ``target`` for MRG functions
- Renamed ``MultinomialWOReplacementFromUniform`` to ``ChoiceFromUniform``
- Changed ``grad()`` method to ``L_op()`` in ops that need the outputs to compute gradient
- Removed or deprecated Theano flags:
- ``cublas.lib``
- ``cuda.enabled``
- ``enable_initial_driver_test``
- ``gpuarray.sync``
- ``home``
- ``lib.cnmem``
- ``nvcc.*`` flags
- ``pycuda.init``
Convolution updates:
- Implemented separable convolutions for 2D and 3D
- Implemented grouped convolutions for 2D and 3D
- Added dilated causal convolutions for 2D
- Added unshared convolutions
- Implemented fractional bilinear upsampling
- Removed old ``conv3d`` interface
- Deprecated old ``conv2d`` interface
GPU:
- Added a meta-optimizer to select the fastest GPU implementations for convolutions
- Prevent GPU initialization when not required
- Added disk caching option for kernels
- Added method ``my_theano_function.sync_shared()`` to help synchronize GPU Theano functions
- Added useful stats for GPU in profile mode
- Added Cholesky op based on ``cusolver`` backend
- Added GPU ops based on `magma library <http://icl.cs.utk.edu/magma/software/>`_:
SVD, matrix inverse, QR, cholesky and eigh
- Added ``GpuCublasTriangularSolve``
- Added atomic addition and exchange for ``long long`` values in ``GpuAdvancedIncSubtensor1_dev20``
- Support log gamma function for all non-complex types
- Support GPU SoftMax in both OpenCL and CUDA
- Support offset parameter ``k`` for ``GpuEye``
- ``CrossentropyCategorical1Hot`` and its gradient are now lifted to GPU
- cuDNN:
- Official support for ``v6.*`` and ``v7.*``
- Added spatial transformation operation based on cuDNN
- Updated and improved caching system for runtime-chosen cuDNN convolution algorithms
- Support cuDNN v7 tensor core operations for convolutions with runtime timed algorithms
- Better support and loading on Windows and Mac
- Support cuDNN v6 dilated convolutions
- Support cuDNN v6 reductions for contiguous inputs
- Optimized ``SUM(x^2)``, ``SUM(ABS(X))`` and ``MAX(ABS(X))`` operations with cuDNN reductions
- Added new Theano flags ``cuda.include_path``, ``dnn.base_path`` and ``dnn.bin_path``
to help configure Theano when CUDA and cuDNN can not be found automatically
- Extended Theano flag ``dnn.enabled`` with new option ``no_check`` to help speed up cuDNN importation
- Disallowed ``float16`` precision for convolution gradients
- Fixed memory alignment detection
- Added profiling in C debug mode (with theano flag ``cmodule.debug=True``)
- Added Python scripts to help test cuDNN convolutions
- Automatic addition of cuDNN DLL path to ``PATH`` environment variable on Windows
- Updated ``float16`` support
- Added documentation for GPU float16 ops
- Support ``float16`` for ``GpuGemmBatch``
- Started to use ``float32`` precision for computations that don't support ``float16`` on GPU
New features:
- Implemented truncated normal distribution with box-muller transform
- Added ``L_op()`` overriding option for ``OpFromGra
没有合适的资源?快使用搜索试试~ 我知道了~
Theano-1.0.4.tar.gz
0 下载量 149 浏览量
2024-05-12
23:21:13
上传
评论
收藏 2.71MB GZ 举报
温馨提示
Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
资源推荐
资源详情
资源评论






























收起资源包目录





































































































共 634 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论


程序员Chino的日记
- 粉丝: 4237
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 基于单片机八路抢答器的设计.doc
- 计算机专业中专生自我鉴定.docx
- 基于改进的卷积神经网络多姿态人脸识别研究.pdf
- 网络营销讲义课件.pptx
- 基于EMD算法的滤波系统设计.doc
- 新浪云计算公开课第二期SAE平台的灵活应用吕毅、魏世.pptx
- 基于单片机的智能车设计与实现.doc
- 基于MATLAB的循环码编译码器设计与仿真---胡鑫.doc
- 项目管理师师级其他类1-基础知识(1).pptx
- 项目管理系统规划方案V3.ppt
- 专题讲座资料(2021-2022年)大学计算机基础课程建设与改革.doc
- 最新精品推荐移动互联网加高校智慧校园解决方案.docx
- 2023年销售部门KA网络加盟市场绩效考核KPI.doc
- 网络营销系统研讨.pptx
- 嵌入式学习心得总结.docx
- 计算机病毒木马和间谍软件与防治.pptx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
