没有合适的资源?快使用搜索试试~ 我知道了~
EVOLUTION OF YOLO ALGORITHM AND YOLOV5.pdf
需积分: 5 0 下载量 33 浏览量
2024-08-05
10:58:18
上传
评论
收藏 3.09MB PDF 举报
温馨提示
YOLO
资源推荐
资源详情
资源评论





















Do Thuan
EVOLUTION OF YOLO ALGORITHM AND YOLOV5: THE STATE-OF-THE-ART
OBJECT DETECTION ALGORITHM

EVOLUTION OF YOLO ALGORITHM AND YOLOV5: THE STATE-OF-THE-ART
OBJECT DETECTION ALGORITHM
Do Thuan
Bachelor’s Thesis
DIN16SP
Information Technology
Oulu University of Applied Sciences

3
ABSTRACT
Oulu University of Applied Sciences
Bachelor’s Degree in Information Technology
Author(s): Do Thuan
Title of the thesis: Evolution of YOLO Algorithm and YOLOv5: The State-of-the-art Object Detection
Algorithm
Thesis examiner(s): Jaakko Kaski
Term and year of thesis completion: Spring 2021 Pages: 61
Object detection is one of the primary tasks in computer vision which consists of determining the
location on the image where certain objects are present, as well as classifying those objects. In
2015, the YOLO (You Only Look Once) algorithm was born with a new approach, reframing object
detection as a regression problem and performing in a single neural network. That made the object
detection field explode and obtained much more remarkable achievements than just a decade ago.
So far, combining with many of the most innovative ideas coming out of the computer vision
research community, YOLO has been upgraded to five versions and assessed as one of the
outstanding object detection algorithms. The 5th generation of YOLO, YOLOv5, is the latest version
not developed by the original author of YOLO. However, the performance of the YOLOv5 is higher
than the YOLOv4 in terms of both accuracy and speed.
This thesis investigates the most advanced inventions in the field of computer vision which were
integrated into YOLOv5 as well as the previous versions. Using the Colab platform to implement
object detection in the Global Wheat dataset contains 3432 wheat images. Subsequently, the
YOLOv5 model will be evaluated and configured for improvement based on the results.
Keyword: Machine Learning, Artificial Intelligent, Python, Pytorch

4
CONTENTS
1 INTRODUCTION ................................................................................................................... 6
2 YOLO – YOU ONLY LOOK ONCE ........................................................................................ 8
2.1 Concepts .................................................................................................................... 8
2.2 YOLOv1 architecture ................................................................................................ 11
2.3 Loss function ............................................................................................................ 13
3 EVOLUTIONARY HIGHLIGHTS .......................................................................................... 15
3.1 YOLOv2 ................................................................................................................... 15
3.1.1 Add Batch Normalization............................................................................ 15
3.1.2 High Resolution classifier ........................................................................... 16
3.1.3 Convolutional with anchor box ................................................................... 16
3.2 YOLOv3 ................................................................................................................... 19
3.2.1 Bigger network with ResNet ....................................................................... 19
3.2.2 Multi-scale detector .................................................................................... 21
3.3 YOLOv4 ................................................................................................................... 24
3.3.1 Object detection architecture ..................................................................... 24
3.3.2 Backbone – CSPDarknet53 ....................................................................... 26
3.3.3 Neck – Additional block – SPP block ......................................................... 28
3.3.4 Neck – Feature Aggregation – PANet ........................................................ 30
3.3.5 Head – YOLOv3 ......................................................................................... 33
3.3.6 Bag of Freebies .......................................................................................... 34
3.3.7 Bag of Specials .......................................................................................... 35
4 5
TH
GENERATION OF YOLO .............................................................................................. 36
4.1 Overview of YOLOv5 ................................................................................................ 36
4.2 Notable differences – Adaptive anchor boxes .......................................................... 37
5 IMPLEMENTING YOLOV5 ALGORITHM ............................................................................ 38
5.1 Global Wheat Head detection dataset ...................................................................... 38
5.2 Environment ............................................................................................................. 39
5.3 Preparing the dataset for training ............................................................................. 41
5.3.1 Creating the label text files ......................................................................... 44
5.3.2 Splitting data into training set and validation set ........................................ 46

5
5.3.3 Creating the data.yaml file ......................................................................... 48
5.4 Training phase .......................................................................................................... 50
5.4.1 Preparing the architecture .......................................................................... 50
5.4.2 Training model ........................................................................................... 51
5.5 Inference with trained weight .................................................................................... 55
6 CONCLUSION ..................................................................................................................... 59
7 REFERENCES .................................................................................................................... 60
剩余60页未读,继续阅读
资源评论


colin工作室
- 粉丝: 1728
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 2023年移动通信试题库及答案全完整.doc
- 计算机组装与维护实习任务重庆工程职业技术学院.doc
- 网络公司员工保密协议书通用版.doc
- 计算机病毒防护管理办法.doc
- 最新企业网络推广方案策划书-.doc
- 人工智能现状与未来.pptx
- 互联网背景下中国保健品市场营销策略研究.pdf
- 湖南大学项目管理作业分析.pptx
- 实验教程第6章其它常用应用软件的使用.ppt
- 项目管理与一般管理的比较研究.doc
- 实验数据处理软件Excel.doc
- 结合市政工程特点谈项目管理的创新与实践(最新整理).pdf
- 网络营销理念与实务培训课件.pptx
- 项目管理成本类比估算表样本.doc
- 网络编辑内容优化及伪原创培训.pptx
- 互联网+智能家居.ppt
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
