function [xo,fo] = Opt_Steepest(f,grad,x0,TolX,TolFun,dist0,MaxIter)
% 用最速下降法求最优化解
%输入:f为函数名 grad为梯度函数
%x0为解的初值 TolX,TolFun分别为变量和函数的误差阈值
%dist0为初始步长 MaxIter为最大迭代次数
%输出: xo为取最小值的点 fo为最小的函数值
% f0 = f(x(0))
%%%%%%判断输入的变量数,设定一些变量为默认值
if nargin < 7
MaxIter = 100; %最大迭代次数默认为100
end
if nargin < 6
dist0 = 10; %初始步长默认为10
end
if nargin < 5
TolFun = 1e-8; %函数值误差为1e-8
end
if nargin < 4
TolX = 1e-6; %自变量距离误差
end
%%%%%第一步,求解的初值的函数值
x = x0;
fx0 = feval(f,x0);
fx = fx0;
dist = dist0;
kmax1 = 25; %线性搜索法确定步长的最大搜索次数
warning = 0;
%%%%%迭代计算求最优解
for k = 1: MaxIter
g = feval(grad,x);
g = g/norm(g); %求在x处的梯度方向
%%线性搜索方法确定步长
dist = dist*2; %令步长为原步长的二倍
fx1 = feval(f,x-dist*2*g);
for k1 = 1:kmax1
fx2 = fx1;
fx1 = feval(f,x-dist*g);
if fx0 > fx1+TolFun & fx1 < fx2 - TolFun %fx0 > fx1 < fx2,
den = 4*fx1 - 2*fx0 - 2*fx2;num = den - fx0 + fx2; %二次逼近法
dist = dist*num/den;
x = x - dist*g; fx = feval(f,x); %确定下一点
break;
else
dist = dist/2;
end
end
if k1 >= kmax1
warning = warning + 1; %无法确定最优步长
else
warning = 0;
end
if warning >= 2|(norm(x - x0) < TolX&abs(fx - fx0) < TolFun)
break;
end
x0 = x;
fx0 = fx;
end
xo = x; fo = fx;
if k == MaxIter
fprintf('Just best in %d iterations',MaxIter);
end


阿里matlab建模师

- 粉丝: 5907
最新资源
- 网络安全(PPT36页)(1).ppt
- 论借助sniffer诊断Linux网络故障.docx
- 商务英语教学中网络的地位.doc
- 在市打击治理电信网络新型违法犯罪联席会议上表态发言三篇.doc
- 2023年大学计算机基础期末考试知识点.doc
- 系统安全预测技术.pptx
- 企业信息化建设的重要性和状况.docx
- 遥感数字图像处理考题整理.doc
- 高校师生同上一堂网络安全课观后感心得感悟5篇.docx
- 企业集团财务结算中心与计算机系统设计与会计操作.doc
- 电话网络系统方案.doc
- 九上下册物理第三节:广播-电视和移动通信公开课教案教学设计课件测试卷练习卷课时同步训练练习公开课教案.ppt
- 图像处理:十一表示描述.ppt
- 什么网站工作总结写的比较好.docx
- 项目管理与招标采购培训重点课程.doc
- 有关信息化银行对账问题的探讨【会计实务操作教程】.pptx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


