wkiro
=====
An implementation of a parameterless empiric Bayesian classifier with a kernel estimator and bandwidth selection.
Fully implemented in Matlab, partially in JS.
Usage instructions
---
`main.m` is the application entry point. The simplest way to run the whole thing is to just type `main` in Matlab's
Command Window.
The application execution can be parameterized by the following variables:
- `TRAINING_SET_PARAMETERS`, specifying a matrix of parameter vectors for each training dataset.
- Generated sets can be adjusted in the following dimensions:
- X,Y coordinates of the training set center,
- radius of the training set.
- The number of parameter vectors in the matrix also specifies the number of classes, to which the target elements
will be ascribed.
- One parameter vector describes the features of one training set.
- The data format for the training set parameter matrix is the following:
```matlab
[x1,y1,r1; x2,y2,r2; x3,y3,r3] % unrestricted matrix length
```
- In case no value is defined for the variable, the following default is used:
```matlab
[-15,-15,1; 15,15,1; -15,15,1; 15,-15,1];
```
- `TRAINING_SET_ELEMENTS_COUNT`, specifying the quantity of elements forming each training set.
- Every training set has an equal number of elements.
- In case no value is defined for the variable, the following default is used:
```matlab
20
```
- `ELEMENTS`, specifying the set of elements to classify.
- An element is represented by a pair of coordinates.
- The format for the data within this variable is as follows:
```matlab
[x1,y1; x2,y2; x3,y3] % unrestricted matrix length
```
- In case no value is defined for the variable, a set of 100 elements generated randomly within a circular area cenetered at `(0,0)` and with a radius of `7` is used as the default.
- `KERNEL`, specifying the function used for kernel estimation by the classifier.
- The variable is meant to be a function handle and can be used only as such.
- There are a few predefined kernel functions available in the `kernels` directory for you to use.
- In case no value is defined for the variable, the Gaussian kernel is used as the default.
todo
---
- update the implementation in JS
- add unit test coverage in JS
- fix the bug under Octave.
没有合适的资源?快使用搜索试试~ 我知道了~
一种具有核密度估计和带宽选择的无参数经验贝叶斯分类器的matlab实现.zip

共55个文件
m:32个
png:16个
db:2个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 75 浏览量
2024-03-31
13:16:30
上传
评论
收藏 793KB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
















收起资源包目录






























































共 55 条
- 1
资源评论



matlab科研助手
- 粉丝: 3w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- RS232串口控制智能步进电机控制器实验教学套件BJDJ程序.rar
- TDA1521制作2.1音箱电路图和PCB.ddb
- SSB对讲机设计报告.rar
- PC机与多台单片机实时通信系统的设计与实现.doc
- msp430单片机c语言应用程序设计实例精讲.rar
- MSP430x2xx_系列中文2.rar
- LM337做直流电源.pdf
- IO口与FPGA管脚对应关系表.pdf
- FPGA数字电子系统设计与开发实例导航(源程_.rar
- FPGA设计应用培训VHDL-RedLogic.pdf
- Flash存储器及其在MCS_51系统中的应用.pdf
- car2等奖.rar
- FPGA基本知识.pdf
- AVR_Code.rar
- AD9850信号发生器模块.rar
- ADC_DAC基础知识.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
