# Galaxy-ML
Galaxy-ML is a web machine learning end-to-end pipeline building framework, with special support to biomedical data. Under the management of unified scikit-learn APIs, cutting-edge machine learning libraries are combined together to provide thousands of different pipelines suitable for various needs. In the form of [Galalxy](https://github.com/galaxyproject/galaxy) tools, Galaxy-ML provides scalabe, reproducible and transparent machine learning computations.
### Key features
- simple web UI
- no coding or minimum coding requirement
- fast model deployment and model selection, specialized in hyperparameter tuning using `GridSearchCV`
- high level of parallel and automated computation
### Supported modules
A typic machine learning pipeline is composed of a main estimator/model and optional preprocessing component(s).
##### Model
- _[scikit-learn](https://github.com/scikit-learn/scikit-learn)_
- sklearn.ensemble
- sklearn.linear_model
- sklearn.naive_bayes
- sklearn.neighbors
- sklearn.svm
- sklearn.tree
- _[xgboost](https://github.com/dmlc/xgboost)_
- XGBClassifier
- XGBRegressor
- _[mlxtend](https://github.com/rasbt/mlxtend)_
- StackingCVClassifier
- StackingClassifier
- StackingCVRegressor
- StackingRegressor
- _[keras](https://github.com/keras-team/keras)_
- KerasGClassifier (new API)
- KerasGRegressor (new API)
##### Preprocessor
- _[scikit-learn](https://github.com/scikit-learn/scikit-learn)_
- sklearn.preprocessing
- sklearn.feature_selection
- sklearn.decomposition
- sklearn.kernel_approximation
- sklearn.cluster
- _[imblanced-learn](https://github.com/scikit-learn-contrib/imbalanced-learn)_
- imblearn.under_sampling
- imblearn.over_sampling
- imblearn.combine
- _[skrebate](https://github.com/EpistasisLab/scikit-rebate/tree/master/skrebate)_
- ReliefF
- SURF
- SURFstar
- MultiSURF
- MultiSURFstar
##### Custom implementations for biomedical application
- [IRAPSClassifier](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445594/)
- BinarizeTargetClassifier/BinarizeTargetRegressor
- [TDMScaler](https://www.ncbi.nlm.nih.gov/pubmed/26844019)
- DyRFE/DyRFECV
- Z_RandomOverSampler
### Examples
1. Build a simple randomforest model.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:Galaxy-ML-0.7.3.1.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论

























收起资源包目录


























































共 46 条
- 1
资源评论


挣扎的蓝藻
- 粉丝: 15w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 我国互联网金融发展探讨.docx
- 《计算机应用基础》精品课程电子教学导案.doc
- 基于智能电网的配电自动化探讨.docx
- 安全生产信息化平台设计方案.docx
- 2014年全国计算机等级测验考试《三级网络技术》上机测验考试冲刺试题4.doc
- 大数据时代我国宏观经济数据的冲突与协调.docx
- 2011级C语言课程设计方案课题安排.doc
- 大数据时代下大学生思想政治教育初探.docx
- ATC单片机彩灯控制方案设计(含源文件).doc
- 基于翻转课堂的开放教育《计算机应用基础》课程教学模式应用研究.docx
- 测绘工程专业的计算机实践能力培养模式探索.docx
- 基于计算思维的大学计算机基础课程教学内容设计.docx
- 开放式计算机实验室的管理改革探索.docx
- 机械设计制造及其自动化外文翻译外文文献英文文献液压支架的最优化设计.doc
- 板卡需求的分析.zip
- 计算机网络基础通信技师培训.ppt
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
