[train hyper-parameters: Namespace(batch_size=16, lr=0.001, lrf=0.01, num_classes=5)]
[epoch: 1]
train loss:0.0320 test accuracy:0.8966
[epoch: 2]
train loss:0.0097 test accuracy:0.9328
[epoch: 3]
train loss:0.0075 test accuracy:0.8966
[epoch: 4]
train loss:0.0036 test accuracy:0.9096
[epoch: 5]
train loss:0.0023 test accuracy:0.9251
[epoch: 6]
train loss:0.0016 test accuracy:0.9225
[epoch: 7]
train loss:0.0010 test accuracy:0.9276
[epoch: 8]
train loss:0.0006 test accuracy:0.9199
[epoch: 9]
train loss:0.0005 test accuracy:0.9276
[epoch: 10]
train loss:0.0004 test accuracy:0.9225
[epoch: 11]
train loss:0.0003 test accuracy:0.9173
[epoch: 12]
train loss:0.0003 test accuracy:0.9096
[epoch: 13]
train loss:0.0003 test accuracy:0.9199
[epoch: 14]
train loss:0.0002 test accuracy:0.9199
[epoch: 15]
train loss:0.0002 test accuracy:0.9199
[epoch: 16]
train loss:0.0002 test accuracy:0.9173
[epoch: 17]
train loss:0.0001 test accuracy:0.9199
[epoch: 18]
train loss:0.0001 test accuracy:0.9225
[epoch: 19]
train loss:0.0001 test accuracy:0.9199
[epoch: 20]
train loss:0.0002 test accuracy:0.9276
[epoch: 21]
train loss:0.0002 test accuracy:0.9251
[epoch: 22]
train loss:0.0001 test accuracy:0.9199
[epoch: 23]
train loss:0.0001 test accuracy:0.9225
[epoch: 24]
train loss:0.0002 test accuracy:0.9251
[epoch: 25]
train loss:0.0001 test accuracy:0.9225
[epoch: 26]
train loss:0.0002 test accuracy:0.9251
[epoch: 27]
train loss:0.0001 test accuracy:0.9225
[epoch: 28]
train loss:0.0001 test accuracy:0.9225
[epoch: 29]
train loss:0.0001 test accuracy:0.9199
[epoch: 30]
train loss:0.0001 test accuracy:0.9199
[epoch: 31]
train loss:0.0002 test accuracy:0.9173
[epoch: 32]
train loss:0.0001 test accuracy:0.9225
[epoch: 33]
train loss:0.0001 test accuracy:0.9251
[epoch: 34]
train loss:0.0001 test accuracy:0.9251
[epoch: 35]
train loss:0.0001 test accuracy:0.9251
[epoch: 36]
train loss:0.0001 test accuracy:0.9251
[epoch: 37]
train loss:0.0001 test accuracy:0.9225
[epoch: 38]
train loss:0.0001 test accuracy:0.9225
[epoch: 39]
train loss:0.0001 test accuracy:0.9251
[epoch: 40]
train loss:0.0001 test accuracy:0.9251
[epoch: 41]
train loss:0.0001 test accuracy:0.9251
[epoch: 42]
train loss:0.0001 test accuracy:0.9251
[epoch: 43]
train loss:0.0001 test accuracy:0.9251
[epoch: 44]
train loss:0.0001 test accuracy:0.9251
[epoch: 45]
train loss:0.0001 test accuracy:0.9251
[epoch: 46]
train loss:0.0001 test accuracy:0.9251
[epoch: 47]
train loss:0.0001 test accuracy:0.9251
[epoch: 48]
train loss:0.0001 test accuracy:0.9251
[epoch: 49]
train loss:0.0001 test accuracy:0.9251
[epoch: 50]
train loss:0.0001 test accuracy:0.9251
没有合适的资源?快使用搜索试试~ 我知道了~
水果数据集的五分类图像识别项目:基于Swin-Transformer网络的迁移学习

共2000个文件
jpg:1992个
py:4个
txt:2个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉

温馨提示
本项目基于Swin-Transformer迁移学习的图像分类,可直接运行。 数据集采用水果五分类数据集(哈密瓜、胡萝卜、樱桃、黄瓜、西瓜),包括1849张训练图片和387张预测图片。 网络训练的时候采用cos 学习率自动衰减,训练了50个epoch。模型在测试集最好的表现达到93%精度。 如果想要训练自己的数据集,请查看README文件
资源推荐
资源详情
资源评论






























收起资源包目录





































































































共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20

听风吹等浪起
- 粉丝: 2w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- MiriaManager-机器人开发资源
- 如何引导初中生正确对待与利用网络获奖科研报告论文.docx
- 五年级下信息技术课件-第一课-网络漫游南方版.ppt
- xx政府网站建设方案.doc
- 电子政务网络系统设计方案要点.doc
- 先闻CAD工具箱-常用工具使用手册.doc
- 如何推动工程项目管理提升.docx
- 网络营销策划书范文.docx
- 基于PLC的交通灯控制系统开题报告.doc
- 基于单片机AT89C51的温度控制系统的设计.docx
- 基于web的在线问卷调查系统的设计与实现.doc
- 互联网研发人员专业简历模板.docx
- 深度学习领域经典论文的翻译工作
- CoSec-Kotlin资源
- 新变电站综合自动化验收标准.doc
- -电子商务-专业毕业设计指导书.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

- 1
- 2
前往页