# LDSC (LD SCore) `v1.0.1`
`ldsc` is a command line tool for estimating heritability and genetic correlation from GWAS summary statistics. `ldsc` also computes LD Scores.
## Getting Started
In order to download `ldsc`, you should clone this repository via the commands
```
git clone https://github.com/bulik/ldsc.git
cd ldsc
```
In order to install the Python dependencies, you will need the [Anaconda](https://store.continuum.io/cshop/anaconda/) Python distribution and package manager. After installing Anaconda, run the following commands to create an environment with LDSC's dependencies:
```
conda env create --file environment.yml
source activate ldsc
```
Once the above has completed, you can run:
```
./ldsc.py -h
./munge_sumstats.py -h
```
to print a list of all command-line options. If these commands fail with an error, then something as gone wrong during the installation process.
Short tutorials describing the four basic functions of `ldsc` (estimating LD Scores, h2 and partitioned h2, genetic correlation, the LD Score regression intercept) can be found in the wiki. If you would like to run the tests, please see the wiki.
## Updating LDSC
You can update to the newest version of `ldsc` using `git`. First, navigate to your `ldsc/` directory (e.g., `cd ldsc`), then run
```
git pull
```
If `ldsc` is up to date, you will see
```
Already up-to-date.
```
otherwise, you will see `git` output similar to
```
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/bulik/ldsc
95f4db3..a6a6b18 master -> origin/master
Updating 95f4db3..a6a6b18
Fast-forward
README.md | 15 +++++++++++++++
1 file changed, 15 insertions(+)
```
which tells you which files were changed. If you have modified the `ldsc` source code, `git pull` may fail with an error such as `error: Your local changes to the following files would be overwritten by merge:`.
In case the Python dependencies have changed, you can update the LDSC environment with
```
conda env update --file environment.yml
```
## Where Can I Get LD Scores?
You can download [European](https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2) and [East Asian LD Scores](https://data.broadinstitute.org/alkesgroup/LDSCORE/eas_ldscores.tar.bz2) from 1000 Genomes [here](https://data.broadinstitute.org/alkesgroup/LDSCORE/). These LD Scores are suitable for basic LD Score analyses (the LD Score regression intercept, heritability, genetic correlation, cross-sex genetic correlation). You can download partitioned LD Scores for partitioned heritability estimation [here](http://data.broadinstitute.org/alkesgroup/LDSCORE/).
## Support
Before contacting us, please try the following:
1. The [wiki](https://github.com/bulik/ldsc/wiki) has tutorials on [estimating LD Score](https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial), [heritability, genetic correlation and the LD Score regression intercept](https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation) and [partitioned heritability](https://github.com/bulik/ldsc/wiki/Partitioned-Heritability).
2. Common issues are described in the [FAQ](https://github.com/bulik/ldsc/wiki/FAQ)
2. The methods are described in the papers (citations below)
If that doesn't work, you can get in touch with us via the [google group](https://groups.google.com/forum/?hl=en#!forum/ldsc_users).
Issues with LD Hub? Email [email protected]
## Citation
If you use the software or the LD Score regression intercept, please cite
[Bulik-Sullivan, et al. LD Score Regression Distinguishes Confounding from Polygenicity in Genome-Wide Association Studies.
Nature Genetics, 2015.](http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.3211.html)
For genetic correlation, please also cite
[Bulik-Sullivan, B., et al. An Atlas of Genetic Correlations across Human Diseases and Traits. Nature Genetics, 2015.](https://www.nature.com/articles/ng.3406) Preprint available on bioRxiv doi: http://dx.doi.org/10.1101/014498
For partitioned heritability, please also cite
[Finucane, HK, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, 2015.](https://www.nature.com/articles/ng.3404) Preprint available on bioRxiv doi: http://dx.doi.org/10.1101/014241
For stratified heritability using continuous annotation, please also cite
[Gazal, S, et al. Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. Nature Genetics, 2017.](https://www.nature.com/articles/ng.3954)
If you find the fact that LD Score regression approximates HE regression to be conceptually useful, please cite
Bulik-Sullivan, Brendan. Relationship between LD Score and Haseman-Elston, bioRxiv doi: http://dx.doi.org/10.1101/018283
For LD Hub, please cite
[Zheng, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics (2016)](https://doi.org/10.1093/bioinformatics/btw613)
## License
This project is licensed under GNU GPL v3.
## Authors
Brendan Bulik-Sullivan (Broad Institute of MIT and Harvard)
Hilary Finucane (MIT Department of Mathematics)
没有合适的资源?快使用搜索试试~ 我知道了~
ldsc:LD评分回归(LDSC)

共1093个文件
py:19个
ldscore:15个
m_5_50:12个


温馨提示
LDSC(LD SCore) v1.0.1 ldsc是用于根据GWAS摘要统计信息估算遗传力和遗传相关性的命令行工具。 ldsc还计算LD分数。 入门 为了下载ldsc ,您应该通过以下命令克隆此存储库 git clone https://github.com/bulik/ldsc.git cd ldsc 为了安装Python依赖项,您将需要 Python发行和软件包管理器。 安装Anaconda后,运行以下命令以创建具有LDSC依赖项的环境: conda env create --file environment.yml source activate ldsc 完成以上操作后,您可以运行: ./ldsc.py -h ./munge_sumstats.py -h 打印所有命令行选项的列表。 如果这些命令失败并显示错误,则说明在安装过程中出现了问题。 可以在Wiki中找到描述lds
资源详情
资源评论
资源推荐
收起资源包目录





































































































共 1093 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11























weirdquirky
- 粉丝: 43
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- STC89C52RC单片机手册.doc
- lowRISC-硬件开发资源
- 网络安全评估和安全法规.ppt
- 高质量C++编程学习笔记.doc
- 欧司朗普通照明产品网络营销年度方案.pptx
- 某网络系统有限公司商业计划书.docx
- 楼宇自动化论文(1).pdf
- 通信设备公司财务管理手册.doc
- 气象局网络视频监控系统方案.doc
- 2022年MATLAB复习知识点整理版.docx
- 中国网络广告效果营销发展趋势――效果网提供.ppt
- 建立卫生网络体系提升群众医疗保障水平调研思考.pdf
- 网络安全宣传周的活动总结2021年.doc
- 中铁工程项目管理标准化手册检查用表(30个).docx
- 基于AT89C51单片机的16x16LED点阵显示的课程设计.doc
- 中国人民银行招聘笔试计算机习题1.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论10