# Deep Sort with PyTorch

## Update(1-1-2020)
Changes
- fix bugs
- refactor code
- accerate detection by adding nms on gpu
## Latest Update(07-22)
Changes
- bug fix (Thanks @JieChen91 and @yingsen1 for bug reporting).
- using batch for feature extracting for each frame, which lead to a small speed up.
- code improvement.
Futher improvement direction
- Train detector on specific dataset rather than the official one.
- Retrain REID model on pedestrain dataset for better performance.
- Replace YOLOv3 detector with advanced ones.
**Any contributions to this repository is welcome!**
## Introduction
This is an implement of MOT tracking algorithm deep sort. Deep sort is basicly the same with sort but added a CNN model to extract features in image of human part bounded by a detector. This CNN model is indeed a RE-ID model and the detector used in [PAPER](https://arxiv.org/abs/1703.07402) is FasterRCNN , and the original source code is [HERE](https://github.com/nwojke/deep_sort).
However in original code, the CNN model is implemented with tensorflow, which I'm not familier with. SO I re-implemented the CNN feature extraction model with PyTorch, and changed the CNN model a little bit. Also, I use **YOLOv3** to generate bboxes instead of FasterRCNN.
## Dependencies
- python 3 (python2 not sure)
- numpy
- scipy
- opencv-python
- sklearn
- torch >= 0.4
- torchvision >= 0.1
- pillow
- vizer
- edict
## Quick Start
0. Check all dependencies installed
```bash
pip install -r requirements.txt
```
for user in china, you can specify pypi source to accelerate install like:
```bash
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
```
1. Clone this repository
```
git clone [email protected]:ZQPei/deep_sort_pytorch.git
```
2. Download YOLOv3 parameters
```
cd detector/YOLOv3/weight/
wget https://pjreddie.com/media/files/yolov3.weights
wget https://pjreddie.com/media/files/yolov3-tiny.weights
cd ../../../
```
3. Download deepsort parameters ckpt.t7
```
cd deep_sort/deep/checkpoint
# download ckpt.t7 from
https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder
cd ../../../
```
4. Compile nms module
```bash
cd detector/YOLOv3/nms
sh build.sh
cd ../../..
```
Notice:
If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either `gcc version too low` or `libraries missing`.
5. Run demo
```
usage: python yolov3_deepsort.py VIDEO_PATH
[--help]
[--frame_interval FRAME_INTERVAL]
[--config_detection CONFIG_DETECTION]
[--config_deepsort CONFIG_DEEPSORT]
[--display]
[--display_width DISPLAY_WIDTH]
[--display_height DISPLAY_HEIGHT]
[--save_path SAVE_PATH]
[--cpu]
# yolov3 + deepsort
python yolov3_deepsort.py [VIDEO_PATH]
# yolov3_tiny + deepsort
python yolov3_deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml
# yolov3 + deepsort on webcam
python3 yolov3_deepsort.py /dev/video0 --camera 0
# yolov3_tiny + deepsort on webcam
python3 yolov3_deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0
```
Use `--display` to enable display.
Results will be saved to `./output/results.avi` and `./output/results.txt`.
All files above can also be accessed from BaiduDisk!
linker:[BaiduDisk](https://pan.baidu.com/s/1YJ1iPpdFTlUyLFoonYvozg)
passwd:fbuw
## Training the RE-ID model
The original model used in paper is in original_model.py, and its parameter here [original_ckpt.t7](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6).
To train the model, first you need download [Market1501](http://www.liangzheng.com.cn/Project/project_reid.html) dataset or [Mars](http://www.liangzheng.com.cn/Project/project_mars.html) dataset.
Then you can try [train.py](deep_sort/deep/train.py) to train your own parameter and evaluate it using [test.py](deep_sort/deep/test.py) and [evaluate.py](deep_sort/deep/evalute.py).

## Demo videos and images
[demo.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)
[demo2.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)


## References
- paper: [Simple Online and Realtime Tracking with a Deep Association Metric](https://arxiv.org/abs/1703.07402)
- code: [nwojke/deep_sort](https://github.com/nwojke/deep_sort)
- paper: [YOLOv3](https://pjreddie.com/media/files/papers/YOLOv3.pdf)
- code: [Joseph Redmon/yolov3](https://pjreddie.com/darknet/yolo/)
没有合适的资源?快使用搜索试试~ 我知道了~
yolov5-deepsort:yolov5检测+深度排序跟踪

共114个文件
py:67个
yaml:10个
cfg:7个


温馨提示
基于 yolo5+deep_sort 的物体计数以及密度估计 deepsort 输入增加了类别,输出了增加了类别和速度 deepsort IOU替换成为DIOU 密度估计是检测的后处理,简单的涂色+高斯模糊实现的demo 效果展示: 原版yolov5参考
资源详情
资源评论
资源推荐
收起资源包目录





































































































共 114 条
- 1
- 2






















韦先波
- 粉丝: 2323
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 电气自动化技术专业教学团队推荐表.doc
- 2023年公共关系学网络终考题库2.doc
- 移动通信技术的发展.doc
- 计算机网络技术专业培养计划.doc
- 商业计划书(上海润金软件有限公司交易助理项目).doc
- 医学统计学第十六章--Logistic回归分析.ppt
- 基于PLC的自动摆饼机控制系统的设计及实现(顾小强).ppt
- 粤教版网络技术应用教材与教学研讨市公开课一等奖百校联赛特等奖课件.pptx
- 互联网金融个体网络借贷资金存管业务规范.docx
- 解读云计算与云数据存储发展趋势技术研究.doc
- 综合布线建设方案.doc
- 基于C51单片机的数字时钟课程设计C语言,带闹钟.doc
- 谭浩强C语言第13章.ppt
- 大学生网络利用调查报告.doc
- 2023年学员做试卷中小学教师融合教育知识网络竞赛.docx
- 互联网项目商业计划书模板.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论1