function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
% ACATSP.m
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Rho_d 信息素蒸发系数的衰减度
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%第一步:变量初始化
% 设置初始参数如下:
m=30;Alpha=1;Beta=5;Rho=0.5;NC_max=100;Q=100;Rho_d=0
% 10城市坐标为:(C为n*2的矩阵)
load oliver30 -ascii;
C=oliver30;%这里使用load载入坐标
n=size(C,1);%表示问题的规模(城市个数),n为第一维的长度
D=zeros(n,n);%D表示完全图的赋权邻接矩阵,D为n*n全零矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;%
else
D(i,j)=eps;%应该是0,但是下面要取倒数,故用eps
end
% D(j,i)=D(i,j);%这句是多余的!
end
end
Eta=1./D;%Eta为启发因子,这里设为距离的倒数,注意这是阵列的右除,即Eta(i,j)=1/D(i,j)
Tau=ones(n,n);%Tau为信息素矩阵
Tabu=zeros(m,n);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,n);%各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度,这一句不懂是什么意思!!为啥乘以无穷大
L_ave=zeros(NC_max,1);%各代路线的平均长度
while NC<=NC_max%停止条件之一:达到最大迭代次数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))%ceil函数返回>=A的最近的整数
%Randpos=[Randpos,randperm(n)];%这一句不好理解,可以改成下面的表达方式
Randpos=cat(2,Randpos,randperm(n));%注意是沿着第二维-列来加长的,所以是2
end
Tabu(:,1)=(Randpos(1,1:m))';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已访问的城市
J=zeros(1,(n-j+1));%待访问的城市
P=J;%待访问城市的选择概率分布
Jc=1;
for k=1:n %这里产生一只蚂蚁需要遍历的所有城市,但还没有选择
if length(find(visited==k))==0 %于是,J就填满了所有等待访问的城市
J(Jc)=k; %
Jc=Jc+1; %
end %注意!这是if对应的end!
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);%注意启发因子Eta是个矩阵!这是改进点之一!
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end %到此为止,m只蚂蚁完全走完了各自的路径
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%第四步:记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n)); %以上计算出了每只蚂蚁的周游路径长度
end
L_best(NC)=min(L); %这里得到所有路径里最短的一条
pos=find(L==L_best(NC)); %找出最短路径所在的行
R_best(NC,:)=Tabu(pos(1),:);%得到第NC次迭代的最优路径
L_ave(NC)=mean(L);
%到此为止,第NC次迭代就完成了!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
% Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);%这显然是一个蚁周系统,注意L(i)!
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q;%蚁密系统
%Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/D(i,j);
%Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L_best(NC);%Maxmin系统
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 这是保留区,可以改进为蚂蚁量系统或蚂蚁密系统,也可以加入混合算法! % %
% %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q;
end
Tau=(1-Rho).*Tau+Delta_Tau; %这就是蚁群算法的改进点之二,信息素的刷新就在这里
Rd(NC)=Rho;%把每一代的信息素挥发系数存进Rd中
Rdd(NC)=Rho_d;
NC=NC+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end %注意这是while循环的end!是总的循环控制
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%第七步:输出结果
Pos=find(L_best==min(L_best)); %找出最短的路径所在矩阵的坐标
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
figure('Name','蚁密系统')
subplot(2,2,1)
DrawRoute(C,Shortest_Route);
title(['最短路径示意图','(\alpha=',num2str(Alpha),',\beta=',num2str(Beta),',\rho=',num2str(Rho),')']);
xlabel('城市的X坐标');
ylabel('城市的Y坐标');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(2,2,2)
plot(L_best,'b')
hold on
plot(L_ave,'r');
legend('\it每代最短路径长度','\it每代平均路径长度');
title(['进行',int2str(NC_max),'次迭代的演化图','(\alpha=',num2str(Alpha),',\beta=',num2str(Beta),',\rho=',num2str(Rho),')']);
xlabel('迭代次数');
ylabel('路径长度');
gtext(['\rightarrow 最优结果=', num2str(Shortest_Length) ]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(2,2,3)
%bar(Rd);
plot(Rd,'rx');
grid on
xlabel('迭代次数');
ylabel('信息素蒸发系数');
title(['信息素蒸发系数演化图','(\alpha=',num2str(Alpha),',\beta=',num2str(Beta),',\rho=',num2str(Rho),')']);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(2,2,4)
plot(Rdd);
grid on
xlabel('迭代次数');
ylabel('信息素蒸发系数的衰减度');
title(['信息素蒸发系数衰减度演化图','(\alpha=',num2str(Alpha),',\beta=',num2str(Beta),',\rho=',num2str(Rho),')']);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawRoute(C,R)
%%====================================================================
%% DrawRoute.m
%% 画路线图的子函数
%%--------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%====================================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([