没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
内容概要:本书《Deep Learning Recommender Systems》深入探讨了深度学习在推荐系统中的应用,帮助读者掌握这一前沿领域的理论与实践技能。书中不仅介绍了深度学习和生成式AI在推荐模型中的应用,还详细讨论了行业架构和技术实现,包括模型训练、特征存储、数据流处理等。作者结合YouTube、Alibaba、Airbnb和Netflix等公司的实际案例,展示了如何构建更智能、更有效的推荐系统。此外,书中还涵盖了Facebook的DLRM模型、Airbnb的实时搜索推荐系统、YouTube的视频推荐系统以及阿里巴巴推荐系统的演变。; 适合人群:具备一定机器学习基础,希望进入或深入研究推荐系统领域的研究生、研究人员和从业者。; 使用场景及目标:①了解深度学习推荐模型的结构特点及其在行业中的应用;②掌握大型互联网公司推荐系统的具体实现方法和技术框架;③学习如何从实际业务场景出发,优化推荐系统的性能和效果。; 其他说明:本书由多位拥有丰富实践经验的专家撰写,结合了学术研究和工业应用的独特见解。它不仅提供了技术细节,还强调了创新思维的重要性,鼓励读者开发新的解决方案。书中还特别关注了如何培养成为优秀的推荐系统工程师所需的技能和能力,包括知识、工具、分析能力和商业理解力。
资源推荐
资源详情
资源评论






























Deep Learning Recommender Systems
Recommender systems are ubiquitous in modern life and are one of the main mon-
etization channels for internet technology giants. This book helps graduate students,
researchers, and practitioners to get to grips with this cutting-edge eld and build the
thorough understanding and practical skills needed to progress in the area.
It not only introduces the applications of deep learning and generative AI for recom-
mendation models but also focuses on the industry architecture of the recommender
systems. The authors include a detailed discussion of the implementation solutions
used by companies such as YouTube, Alibaba, Airbnb, and Netix, as well as the
related machine learning framework including model serving, model training, feature
storage, and data stream processing.
Zhe Wang is an engineering director at a Silicon Valley tech company, leading
a machine learning team of over 40 members. Previously, he served as a Senior
Manager at TikTok. He has more than 10 years of experience working in the eld of
recommender systems and computational advertising. He has published more than 10
academic papers and 3 technical books, with more than 100 000 readers.
Chao Puis a machine learning engineer with extensive experience in scalable machine
learning systems at large-scale IT companies. He has designed, developed, operated,
and optimized multiple recommendation systems that serve millions of customers.
Felice Wang is a data scientist with a wealth of experience in creating analytics
models, such as predicting customer retention and optimizing price. She has also
implemented machine learning techniques to build data-driven resolutions for vari-
ous business circumstances.

“Recommender systems hold immense commercial value, and deep learning is taking
them to the next level. This book focuses on real-world applications, equipping
engineers with the tools to build smarter, more effective recommendation systems.
With a clear and practical approach, this book is an essential guide to mastering the
latest advancements in the eld.”
Yue Zhuge, NGP Capital
“Reading this book allows you to witness the wealth of resources and engineering
practices driving recommendation system development. The authors share unique
insights into bridging academic research and industry applications, providing valuable
technical perspectives for practitioners and students. The book emphasizes innovative
thinking and inspires readers to develop new solutions in recommendation system
technologies.”
Zi Yang, Google DeepMind

Deep Learning
RecommenderSystems
ZHE WANG
CHAO PU
FELICE WANG

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467
Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.
We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.
www.cambridge.org
Information on this title: www.cambridge.org/9781009447508
DOI: 10.1017/9781009447515
© Zhe Wang, Chao Pu, and Felice Wang 2025
This publication is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, no reproduction of any part may take
place without the written permission of Cambridge University Press & Assessment.
When citing this work, please include a reference to the DOI 10.1017/9781009447515
First published 2025
A catalogue record for this publication is available from the British Library
A Cataloging-in-Publication data record for this book is available from the Library of Congress
ISBN 978-1-009-44750-8 Paperback
Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this
publication and does not guarantee that any content on such websites is, or will
remain, accurate or appropriate.
剩余313页未读,继续阅读
资源评论


死磕代码程序媛

- 粉丝: 483
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 基于MATLAB GUI的学生成绩管理应用系统
- 基于机器学习与深度学习的中文微博情感解析研究
- Android RecyclerView 实现电视同款水平无限自动滚动轮播
- springboot-船运物流管理系统.zip
- springboot-高校竞赛管理系统.zip
- springboot-基于大数据的智能家居销量数据分析.zip
- Android RecyclerView 实现卡片滑动层叠效果
- 吴恩达微专业之深度学习工程师作业
- C语言手撕机器学习/深度学习算法
- 《超简单教程:一键云编译OpenWrt-Lede固件轻松上手》
- 笔记本电脑广州托运北京
- 通用深度学习推理工具,可在生产环境中快速上线由TensorFlow、PyTorch、Caffe框架训练出的深度学习模型
- 笔记本电脑广州托运北京小程序
- 神策数据官方 Java 埋点 SDK:轻量级 Java 端数据采集工具
- 基于STM32单片机的低功耗授时单元设计.caj
- 基于Linux操作系统动态调频技术研究.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
