# Helmet_Detection
该项目是使用 `YOLOv5 v2.x` 的程序来训练在智能工地安全领域中头盔目标检测的应用
## 纯图片再来一波演示!




## 指标
### yolov5s 为基础训练,`epoch = 50`
|分类|P|R|mAP0.5|
|---|---|---|---|
|总体|0.884|0.899|0.888|
|人体|0.846|0.893|0.877|
|头|0.889|0.883|0.871|
|安全帽|0.917|0.921|0.917|
对应的**权重文件**:[百度云](https://pan.baidu.com/s/1ELPhtW-Q4G8UqEr4YrV_5A),提取码: `b981`
---
### yolov5m 为基础训练,`epoch = 100`
|分类|P|R|mAP0.5|
|---|---|---|---|
|总体|0.886|0.915|0.901|
|人体|0.844|0.906|0.887|
|头|0.9|0.911|0.9|
|安全帽|0.913|0.929|0.916|
对应的**权重文件**:[百度云](https://pan.baidu.com/s/10hlKrgpxVsw4d_vHnPHwEA),提取码: `psst`
---
### yolov5l 为基础训练,`epoch = 100`
|分类|P|R|mAP0.5|
|---|---|---|---|
|总体|0.892|0.919|0.906|
|人体|0.856|0.914|0.897|
|头|0.893|0.913|0.901|
|安全帽|0.927|0.929|0.919|
对应的**权重文件**:[百度云](https://pan.baidu.com/s/1iMZkRNXY1fowpQCcapFDqw),提取码: `a66e`
---
# 1.YOLO v5训练自己数据集教程
使用的数据集:[Safety-Helmet-Wearing-Dataset](https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset) ,感谢这位大神的开源数据集!
> 本文结合 [YOLOv5官方教程](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 来写
## 环境准备
首先确保自己的环境:
```text
Python>=3.7
Pytorch==1.5.x
PyQt5==5.15.3
PyQtChart==5.15.3
PyQt5-tools
GPUtil
```
或者使用我的环境(推荐)
```shell script
pip install -r requirements.txt
```
## 官方权重
我已上传到一份到百度云:[下载链接](https://pan.baidu.com/s/1mSIjDAzfiJd1fqSxIYzRDA) , 密码: `44qm`
## 训练自己的数据
#### 提示:
**关于增加数据集分类的方法,请看【5. 增加数据集的分类】**
---
### 1.1 创建自己的数据集配置文件
因为我这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 `data/coco128.yaml` 文件,创建自己的数据集配置文件 `custom_data.yaml`
```yaml
# 训练集和验证集的 labels 和 image 文件的位置
train: ./score/images/train
val: ./score/images/val
# number of classes
nc: 3
# class names
names: ['person', 'head', 'helmet']
```
### 1.2 创建每个图片对应的标签文件
你可以使用 `data/gen_data/gen_head_helmet.py` 来将` VOC` 的数据集转换成 `YOLOv5` 训练需要用到的格式。
使用标注工具类似于 [Labelbox](https://labelbox.com/) 、[CVAT](https://github.com/opencv/cvat) 、[精灵标注助手](http://www.jinglingbiaozhu.com/) 标注之后,需要生成每个图片对应的 `.txt` 文件,其规范如下:
- 每一行都是一个目标
- 类别序号是零索引开始的(从0开始)
- 每一行的坐标 `class x_center y_center width height` 格式
- 框坐标必须采用**归一化的 xywh**格式(从0到1)。如果您的框以像素为单位,则将`x_center`和`width`除以图像宽度,将`y_center`和`height`除以图像高度。代码如下:
```python
import numpy as np
def convert(size, box):
"""
将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
:param size: 图片的尺寸: [w,h]
:param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
:return: 转换后的 [x,y,w,h]
"""
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
dw = np.float32(1. / int(size[0]))
dh = np.float32(1. / int(size[1]))
w = x2 - x1
h = y2 - y1
x = x1 + (w / 2)
y = y1 + (h / 2)
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return [x, y, w, h]
```
生成的 `.txt` 文件放置的名字是图片的名字,放置在 label 文件夹中,例如:
```text
./score/images/train/00001.jpg # image
./score/labels/train/00001.txt # label
```
生成的 `.txt` 例子:
```text
1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374
```
### 1.3 文件放置规范
文件树如下

### 1.4 选择一个您需要的模型
在文件夹 `./models` 下选择一个你需要的模型然后复制一份出来,将文件开头的 `nc = ` 修改为数据集的分类数,下面是借鉴 `./models/yolov5s.yaml`来修改的
```yaml
# parameters
nc: 3 # number of classes <============ 修改这里为数据集的分类数
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
```
### 1.5 开始训练
这里选择了 `yolov5s` 模型进行训练,权重也是基于 `yolov5s.pt` 来训练
```shell script
python train.py --img 640 \
--batch 16 --epochs 10 --data ./data/custom_data.yaml \
--cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt
```
其中,`yolov5s.pt` 需要自行下载放在本工程的根目录即可,下载地址 [官方权重](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)
### 1.6 看训练之后的结果
训练之后,权重会保存在 `./runs` 文件夹里面的每个 `exp` 文件里面的 `weights/best.py` ,里面还可以看到训练的效果

# 2. 侦测
侦测图片会保存在 `./inferenct/output/` 文件夹下
运行命令:
```shell script
python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
例如使用我的 `s` 权重检测图片,可以运行以下命令,侦测图片会保存在 `./inferenct/output/` 文件夹下
```bash
python detect.py --source 图片路径 --weights ./weights/helmet_head_person_s.pt
```
# 3. 检测危险区�
没有合适的资源?快使用搜索试试~ 我知道了~
基于yolov5算法实现安全帽以及危险区域的监测,同时接入海康摄像头实现实时监测

共63个文件
py:21个
jpg:14个
yaml:9个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 46 浏览量
2024-07-01
21:35:23
上传
评论 1
收藏 28.64MB ZIP 举报
温馨提示
【作品名称】:基于yolov5算法实现安全帽以及危险区域的监测,同时接入海康摄像头实现实时监测 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】: 环境准备 首先确保自己的环境: Python>=3.7 Pytorch==1.5.x PyQt5==5.15.3 PyQtChart==5.15.3 PyQt5-tools GPUtil 或者使用我的环境(推荐) pip install -r requirements.txt 1.1 创建自己的数据集配置文件 因为我这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件 custom_data.yaml # 训练集和验证集的 labels 和 image 文件的位置 train: ./score/images/train val: ./score/images/val # number of class
资源推荐
资源详情
资源评论






















收起资源包目录











































































共 63 条
- 1
资源评论


MarcoPage
- 粉丝: 4667
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- ctoc电子商务专题知识讲座.pptx
- C语言第7讲关系运算与逻辑运算if语句.ppt
- 基于单片机温度控制系统的设计.doc
- 基于AT89C52单片机的温室控制系统.doc
- 专题讲座资料(2021-2022年)单片机的红外防盗报警器.doc
- 购物网站策划书.doc
- 基于数据挖掘技术的负荷预测及主动设备维护可行性研究报告.doc
- 计算机教研组工作总结(2023年2023年第一学期).docx
- 【源版】第五章-数据库技术基础.ppt
- 工厂数字化网络监控系统解决方案.doc
- 网络谣言的传播与成因.ppt
- 基于GPS车辆跟踪系统的移动对象数据库应用研究.doc
- 光纤通信(第5版)课后习题答案要点.doc
- 高中数学第1章算法初步章末复习与总结课件新人教A版必修.ppt
- 网络研修学习总结.doc
- 中小型企业网站建设方案模板.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
