深度学习服务器环境搭建

服务器端ssh
https://blog.csdn.net/wscffaa/article/details/109776566

Ubuntu20.04安装NVIDIA显卡驱动+cuda+cudnn配置深度学习环境
https://www.mlzhilu.com/archives/ubuntu2004%E5%AE%89%E8%A3%85nvidia%E6%98%BE%E5%8D%A1%E9%A9%B1%E5%8A%A8

### 配置深度学习环境 #### 1. 安装操作系统 服务器通常运行Linux系统,推荐使用Ubuntu LTS版本(如20.04或22.04),因为其稳定性和广泛的社区支持[^1]。 #### 2. 更新系统包 在安装任何软件之前,确保系统的包管理器是最新的。执行以下命令更新系统: ```bash sudo apt update && sudo apt upgrade -y ``` #### 3. 安装必要的依赖项 为了使GPU加速工作正常,需先安装一些基础工具和库: ```bash sudo apt install build-essential cmake git unzip pkg-config libopencv-dev -y ``` #### 4. NVIDIA驱动程序安装 确认服务器已配备NVIDIA GPU并安装相应的显卡驱动程序。可以通过官方NVIDIA网站下载适合的操作系统和硬件型号的驱动程序。 #### 5. CUDA Toolkit安装 根据所选TensorFlow或PyTorch版本的需求,选择合适的CUDA版本。例如,如果目标是兼容Python 3.11,则可能需要较新版本的CUDA(如CUDA 11.x 或更高)。通过访问[NVIDIA CUDA Archive](https://developer.nvidia.com/cuda-toolkit-archive),找到对应的安装文件并按照说明完成安装。 #### 6. cuDNN安装 cuDNN是一个针对深度神经网络优化的高性能库,同样由NVIDIA提供。它必须与特定版本的CUDA匹配才能正常使用。下载地址受权限保护,注册开发者账号后可获取链接。解压到指定目录并与现有CUDA路径关联即可生效。 #### 7. Python虚拟环境设置 建议创建独立的Python虚拟环境来隔离不同项目之间的依赖冲突。可以利用`venv`模块或者更高级别的工具如Conda来进行管理。 ```bash python3 -m venv dl_env source dl_env/bin/activate pip install --upgrade pip setuptools wheel ``` #### 8. 深度学习框架安装 ##### (a) TensorFlow 基于先前准备好的环境参数表,挑选相适应的TensorFlow发行版并通过Pip快速部署。 ```bash pip install tensorflow==<version> ``` 注意替换 `<version>` 成实际需求的具体数值。 ##### (b) PyTorch 类似地,依据官网指导文档选取恰当选项构建命令字符串用于自动化安装过程。 ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/<cuda-version> ``` 这里也需要调整 `<cuda-version>` 参数至当前使用的标准形式,比如 `cpu`, `cu113` 等表示无GPU支持或是具体代号代表的不同世代架构特性。 #### 9. 测试验证 最后一步至关重要——检验整个链条是否贯通无障碍运作。启动简单的测试脚本以观察输出结果是否符合预期。 对于TensorFlow而言: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` 而面向PyTorch则有如下方法可用: ```python import torch print(torch.cuda.is_available()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SimonChenHere

打赏奖励,以资鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值