【ChatGPT】ChatGPT 原理全解析——读完这10篇论文,你就懂了。

本文详细介绍了ChatGPT的原理,包括Transformer架构、GPT-3、InstructGPT等关键组件,强调了模型在对话生成中的能力,并探讨了In-Context Learning的重要性。ChatGPT通过预训练和人类反馈微调,实现了对用户意图的更好理解和响应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

2022年11月,OpenAI推出人工智能聊天原型ChatGPT,再次赚足眼球,为AI界引发了类似AIGC让艺术家失业的大讨论。

ChatGPT 是一种专注于对话生成的语言模型。它能够根据用户的文本输入,产生相应的智能回答。这个回答可以是简短的词语,也可以是长篇大论。其中 GPT 是 Generative Pre-trained Transformer(生成型预训练变换模型)的缩写。

目录

1 Transformer

2 GPT-3

3 InstructGPT

4 Sparrow

5 RLHF

6 TAMER

7 PPO

8 In-Context Learning

8.1 Why Can GPT Learn In-Context

8.2 What learning algorithm is in-context learning

9 Prompt

参考


下面列出了学习 ChatGPT 必看的 10 篇论文。

1 Transformer

ChatGPT 使用的预训练模型 GPT,是在 Transformer 中的 decoder 基础上进行

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值