【人工智能】生成对抗网络(Generative Adversarial Network)[2]

该博客详细介绍了生成对抗网络(GAN)的改进,包括网络结构的调整,如Deep Convolutional GAN (DCGAN)、ResNet、Self-Attention GAN (SAGAN)等,以及引入编码器的模型,如VAE-GAN、Bidirectional GAN (BiGAN)等。此外,还讨论了使用能量模型的方法,如Energy-based GAN (EBGAN)和Loss-Sensitive GAN (LSGAN)。最后,提到了优化过程的改进,如Two Time-Scale Update Rule (TTUR)和Wasserstein GANs。这些改进旨在提升GAN的生成质量和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

【人工智能】生成对抗网络(Generative Adversarial Network)[2]

(2)改进网络结构

a. 调整神经网络

Deep Convolutional GAN (DCGAN)

DCGAN使用卷积神经网络构造生成对抗网络,为了稳定卷积网络的训练过程,作者提出了以下几点设计思路:

  1. 去掉网络中的pooling层,在判别器中使用Strided convolution (步幅卷积)进行下采样,在生成器中使用transposed convolution(转置卷积)进行上采样;
  2. 在判别器和生成器中使用batch norm
  3. 移除网络中的所有全连接层;
  4. 生成器的输出层使用Tanh激活函数,其他
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值