文章目录
- 深度学习中的 Normalization
- 1. Background
- 2. Normalization
- 3. Local Response Normalization
- 4. Batch Normalization
- 5. Batch Renormalization
- 6. Adaptive Batch Normalization
- 7. L1-Norm Batch Normalization
- 8. Generalized Batch Normalization
- 9. Layer Normalization
- 10. Instance Normalization
- 11. Group Normalization
- 12. Switchable Normalization
- 13. Filter Response Normalization
- 14. Weight Normalization
- 15. Cosine Normalization
深度学习中的 Normalization
归一化是深度学习中的一项关键技术,它有助于稳定训练过程并改善神经网络的性能。本文将讨论归一化的概念、其重要性以及深度学习中使用的不同类型的归一化技术。
- 什么是归一化?
归一化是将输入数据缩放到适合神经网络的范围的过程。归一化的目标是确保输入特征具有类似的尺度,有助于改善神经网络在训练过程中的收敛性。这很重要,因为当输入特征具有不同的尺度时,损失函数的梯度可能会变得不稳定,从而减慢学习过程。
归一化可以通过多种方式进行,并且归一化技术的选择取决于问题类型和使用的数据类型。一些常见的归一化方法包括:
- 最小最大缩放:这是一种简单的技术,将输入数据缩放到0到1的范围内。这是通过减去输入数据的最小值并除以范围(即最大值和最小值之间的差异)来实现的。
- Z-score归一化:这种技术将输入数据缩放为零均值和单位方差。这是通过减去输入数据的平均值并除以标准差来实现的。
- 对数转换:这种技术用于归一化具有偏斜分布的数据。输入数据通过对值取对数来转换。
- 幂转换:这种技术也用于归一化具有偏斜分布的数据。输入数据通过取平方根或立方根的值来转换。
- 归一化在深度学习中的重要性
归一化在深度学习中非常重要,它有助于改善神经网络在训练过程中的收敛性。当输入特征具有不同的尺度时,损失函数的梯度可能会变得不稳定,从而减慢学习过程。通过将输入数据缩放到适合神经网络的范围,归一化有助于解决这个问题