作者:禅与计算机程序设计艺术
1.简介
2012年AlexNet横空出世,大幅提升了计算机视觉领域的表现。而随之带来的技术革命之一就是卷积神经网络(Convolutional Neural Network),CNN可以说是当今最火热的技术。如果你想深入了解CNN的工作原理,理解卷积层、池化层、全连接层的作用,以及如何进行特征提取和分类,那么本文将帮助你理解CNN工作的原理,并掌握提取图像特征的方法和技巧。
本篇文章主要内容包括:
1.CNN的结构;
2.AlexNet模型的架构;
3.CNN的卷积层、池化层和激活函数的介绍;
4.CNN中权重的初始化方法以及为什么要做这样的选择;
5.特征图的可视化及其重要性;
6.梯度消失和梯度爆炸的问题以及解决方案;
7.模型训练过程中Batch Normalization的作用;
8.实验结果分析以及改进方向。
文章在每一个部分都详细阐述了CNN工作原理的基础知识点,有助于读者更好地理解CNN的工作机制。通过对每一小节的讲解,读者可以快速上手并应用到实际项目中。
在开始之前,先对本篇文章做个简单的自我介绍:我叫蒙其·费斯汀,是一名工程师和AI专家,曾就职于Facebook,之后在谷歌从事研究工作,现在辞职创业。我相信,只有认真学习和阅读才能真正领略和理解深度学习的奥妙。欢迎一起交流和分享!
2.CNN概览
2.1 CNN模型
卷积神经网络(Convolutional Neural Network,CNN)是