Python 数据分析竞赛实战:收集、整理、分析竞赛数据,为比赛提供数据支持,并用Python代码展示分析结果

本文介绍了Python在数据竞赛中的应用,包括机器学习竞赛概述、数据获取、数据清洗、数据可视化、模型选择与参数优化、模型评估等步骤。重点讲述了数据获取的多种方法,如网页抓取、API接口调用、数据库查询和Excel导入。同时,文章还讨论了数据清洗的策略,如处理缺失值和异常值,以及模型选择和参数调优的常用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

16年,机器学习、深度学习爆炸式增长,无论是作为一种新兴技术还是技术的普及,数据科学的重要性都在逐渐上升。
2019 年,中国大学生机器学习大赛评测协会(ACM)发布了“2019 大数据与人工智能专业人才创新训练计划”(Data and AI Skills Development Training for College Students),旨在鼓励青年学生进行科研和项目开发,提高青年人对数据科学技术的认识和能力。但是对于机器学习爱好者来说,面临着如何在短时间内参加大赛却难题重重,如何收集、整理、分析数据,为比赛提供数据支持,并用Python代码展示分析结果等问题。因此,本文将尝试通过实践案例来向读者呈现一些解决这些问题的方法。
本次分享的主要内容如下:
① 机器学习竞赛概述
② 数据获取:包括网页抓取、API接口调用、数据库查询、Excel导入等方法
③ 数据清洗:数据缺失值处理、异常值处理、样本均衡处理、特征抽取、数据归一化处理等步骤
④ 数据可视化:包括柱状图、折线图、散点图等基本可视化形式
⑤ 模型选择和参数优化:常用的分类模型有逻辑回归、KNN、SVM、决策树、随机森林、Adaboost、GBDT等,常用的参数调优方法有GridSearchCV、RandomizedSearchCV、贝叶斯优化等
⑥ 模型评估:包括准确率、召回率、F1-score、ROC曲线、AUC等评价指标
⑦ 预测结果的应用:包括实际业务场景下的预测效果分析、错误原因分析等
最后,还将附带完整的代码供大家参考学习,欢迎大家一起交流探讨!
感谢你的阅读,希望本文能给大家带来帮助!

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值