作者:禅与计算机程序设计艺术
1.简介
7月份,在当下热火朝天的AI、区块链等新技术的浪潮中,代码编写越来越多变成了一个大众化的职业。很多企业为了提升生产效率,把开发的流程自动化,推行LowCode模式,通过减少人的参与程度,提高工作效率,使得软件开发的成本大幅下降。在这个领域,提升自动化开发效率的关键,就是要用AI来分析系统日志数据,从而快速发现潜在风险点并解决问题。其中系统日志数据包括服务器日志、应用日志、业务日志等。那么如何将低代码模式中的日志分析系统迁移到零代码模式?
本文将分享一个现实的问题,如何将低代码模式中的日志分析系统迁移到零代码模式?本文将以应用日志作为切入点,探讨如何利用机器学习技术,进行系统日志数据的分析。在引入机器学习之前,需要先了解什么是机器学习、为什么要用它、其特点是什么。另外还会对低代码和零代码开发进行阐述,并对此做出一些自己的看法。
2.核心概念术语
机器学习(Machine Learning)
智能机器学习,又称为智能学习,是由计算机科学、经济学、哲学和心理学于20世纪50年代末60年代初交织而成的一个研究领域。其目的是让计算机具有自主学习能力,可以从经验E中学习到任务T的规律性,并利用这种规律性预测新的、未出现过的事件;以此逼近人类所解决的各种实际问题,是人工智能和统计机器学习的主要分支。由于它的高度非线性、概率性、反馈性、实时性等特性,它在某些领域甚至可以超越人类的想象。
- 自主学习能力:智能机器学习算法不需要依赖于人的指令或规则,能够自主地学习数据的特征及其关系,从而提高预测的准