Neural Sentence Ordering with Recurrent and Convolution

本文探讨了自然语言处理中的句序排列问题,提出使用循环神经网络(RNN)和卷积神经网络(CNN)模型。实验表明,RNN模型在多种指标上优于传统的序列模型,如HMM,而CNN模型则在与人类判断的相关性上表现出色。这些模型可以用于机器翻译、情感分析等任务,为理解和生成文本提供有力工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Natural language processing (NLP) has always been an important research area in the field of artificial intelligence (AI). However, one significant problem in NLP is sentence ordering which refers to arranging the words or sentences in a natural way so that the meaning of the text is maintained and understood correctly. In this paper, we propose two neural networks for sentence ordering: recurrent neural network (RNN), convolutional neural network (CNN). These models are trained on large-scale corpora such as English Wikipedia articles, and then tested on new documents and real world scenarios. The experiments show that our RNN model outperforms traditional sequential models like HMMs by achieving better performance on various metric

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值