作者:禅与计算机程序设计艺术
1.简介
Hyperparameters are parameters that are set before training a neural network and remain constant during the process of learning. These hyperparameters influence the performance of the model and can have significant impact on its convergence speed or accuracy. In this article, we will explore how to tune these hyperparameters for better results in deep learning models.
In traditional machine learning tasks, such as regression or classification problems, hyperparameters are chosen by hand based on experience and intuition. However, in recent years, techniques such as grid search and random search have been employed to automate hyperparameter tuning, allowing researchers to quickly find optimal parameter values without extensive