作者:禅与计算机程序设计艺术
1.简介
图像分类(Image Classification)是一个计算机视觉领域非常重要的问题,其目的是根据输入的图片、视频或者其他二进制数据,自动判别出该图像、视频属于哪个类别,或者将图片划分到多个类别中。在这之前,需要对图像进行预处理(如裁剪、旋转、缩放等),并提取有效的特征,才能让机器学习算法去识别图像中的对象、活动区域、场景等。图像分类是深度学习技术在图像领域的应用,也是计算机视觉领域一个重要研究方向。本文将结合 PyTorch 框架,用最简单的示例代码,带领读者使用 PyTorch 构建一个图像分类模型。
2.基本概念及术语说明
2.1.基本概念
2.1.1.什么是PyTorch?
PyTorch 是一款开源的、基于 Python 的科学计算包,它可以快速、轻松地进行深度学习项目的开发。PyTorch 提供了一种灵活的框架,使得你可以使用自己的想法和构建模块化和可复用的组件。PyTorch 的主要特点包括以下几方面:
- 基于 Python: PyTorch 完全是用 Python 编写的,因此可以很容易上手,也更具可移植性。
- GPU 支持: PyTorch 可以利用 GPU 来加速计算,尤其是在深度神经网络训练和推理的时候。
- 深度学习框架:PyTorch 提供了一个丰富的深度学习框架,包括卷积神经网络、循环神经网络、自编码器、注意力机制、多任务学习等。
- 扩展性强: PyTorch 有着良好的扩展性,你可以通过 PyT